These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 32380227)
1. Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders. Zhao J; Huang J; Zhi D; Yan W; Ma X; Yang X; Li X; Ke Q; Jiang T; Calhoun VD; Sui J J Neurosci Methods; 2020 Jul; 341():108756. PubMed ID: 32380227 [TBL] [Abstract][Full Text] [Related]
2. An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data. Zhao M; Yan W; Luo N; Zhi D; Fu Z; Du Y; Yu S; Jiang T; Calhoun VD; Sui J Med Image Anal; 2022 May; 78():102413. PubMed ID: 35305447 [TBL] [Abstract][Full Text] [Related]
3. Gray matters: ViT-GAN framework for identifying schizophrenia biomarkers linking structural MRI and functional network connectivity. Bi Y; Abrol A; Jia S; Sui J; Calhoun VD Neuroimage; 2024 Aug; 297():120674. PubMed ID: 38851549 [TBL] [Abstract][Full Text] [Related]
4. Generative Adversarial Networks in Medical Image Processing. Gong M; Chen S; Chen Q; Zeng Y; Zhang Y Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866 [TBL] [Abstract][Full Text] [Related]
5. Learning brain representation using recurrent Wasserstein generative adversarial net. Qiang N; Dong Q; Liang H; Li J; Zhang S; Zhang C; Ge B; Sun Y; Gao J; Liu T; Yue H; Zhao S Comput Methods Programs Biomed; 2022 Aug; 223():106979. PubMed ID: 35792364 [TBL] [Abstract][Full Text] [Related]
6. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network. Hazra D; Byun YC; Kim WJ Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483 [TBL] [Abstract][Full Text] [Related]
7. Functional brain network identification and fMRI augmentation using a VAE-GAN framework. Qiang N; Gao J; Dong Q; Yue H; Liang H; Liu L; Yu J; Hu J; Zhang S; Ge B; Sun Y; Liu Z; Liu T; Li J; Song H; Zhao S Comput Biol Med; 2023 Oct; 165():107395. PubMed ID: 37669583 [TBL] [Abstract][Full Text] [Related]
8. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Kim J; Calhoun VD; Shim E; Lee JH Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366 [TBL] [Abstract][Full Text] [Related]
9. Generative multi-adversarial network for striking the right balance in abdominal image segmentation. Rezaei M; Näppi JJ; Lippert C; Meinel C; Yoshida H Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1847-1858. PubMed ID: 32897490 [TBL] [Abstract][Full Text] [Related]
10. A medical image classification method based on self-regularized adversarial learning. Fan Z; Zhang X; Ruan S; Thorstad W; Gay H; Song P; Wang X; Li H Med Phys; 2024 Nov; 51(11):8232-8246. PubMed ID: 39078069 [TBL] [Abstract][Full Text] [Related]
11. Graph-Based Conditional Generative Adversarial Networks for Major Depressive Disorder Diagnosis With Synthetic Functional Brain Network Generation. Oh JH; Lee DJ; Ji CH; Shin DH; Han JW; Son YH; Kam TE IEEE J Biomed Health Inform; 2024 Mar; 28(3):1504-1515. PubMed ID: 38064332 [TBL] [Abstract][Full Text] [Related]
12. Generative Adversarial Networks and Its Applications in Biomedical Informatics. Lan L; You L; Zhang Z; Fan Z; Zhao W; Zeng N; Chen Y; Zhou X Front Public Health; 2020; 8():164. PubMed ID: 32478029 [TBL] [Abstract][Full Text] [Related]
13. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer's disease using resting-state functional network connectivity. Hassanzadeh R; Abrol A; Pearlson G; Turner JA; Calhoun VD PLoS One; 2024; 19(5):e0293053. PubMed ID: 38768123 [TBL] [Abstract][Full Text] [Related]
14. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
15. A GAN-based image synthesis method for skin lesion classification. Qin Z; Liu Z; Zhu P; Xue Y Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536 [TBL] [Abstract][Full Text] [Related]
16. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611 [TBL] [Abstract][Full Text] [Related]
17. DC-AL GAN: Pseudoprogression and true tumor progression of glioblastoma multiform image classification based on DCGAN and AlexNet. Li M; Tang H; Chan MD; Zhou X; Qian X Med Phys; 2020 Mar; 47(3):1139-1150. PubMed ID: 31885094 [TBL] [Abstract][Full Text] [Related]
18. The Deep Learning Generative Adversarial Random Neural Network in data marketplaces: The digital creative. Serrano W Neural Netw; 2023 Aug; 165():420-434. PubMed ID: 37331232 [TBL] [Abstract][Full Text] [Related]
19. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images. Yildiz E; Arslan AT; Yildiz Tas A; Acer AF; Demir S; Sahin A; Erol Barkana D Transl Vis Sci Technol; 2021 May; 10(6):33. PubMed ID: 34038501 [TBL] [Abstract][Full Text] [Related]
20. The Use of Generative Adversarial Network and Graph Convolution Network for Neuroimaging-Based Diagnostic Classification. Huynh N; Yan D; Ma Y; Wu S; Long C; Sami MT; Almudaifer A; Jiang Z; Chen H; Dretsch MN; Denney TS; Deshpande R; Deshpande G Brain Sci; 2024 Apr; 14(5):. PubMed ID: 38790434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]