These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 32380421)
1. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System. Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z iScience; 2020 May; 23(5):101081. PubMed ID: 32380421 [TBL] [Abstract][Full Text] [Related]
2. Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators. Lee S; Koo H; Kang HS; Oh KH; Nam KW Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231939 [TBL] [Abstract][Full Text] [Related]
3. Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability. Wu X; Liu Y; Wang J; Tan Y; Liang Z; Zhou G Adv Mater; 2024 Aug; 36(32):e2403818. PubMed ID: 38794816 [TBL] [Abstract][Full Text] [Related]
4. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni-Rich Lithium Layered Oxide Cathodes for Lithium-Ion Batteries. Reissig F; Puls S; Placke T; Winter M; Schmuch R; Gomez-Martin A ChemSusChem; 2022 Jun; 15(11):e202200401. PubMed ID: 35333434 [TBL] [Abstract][Full Text] [Related]
6. Preparation of single-crystal ternary cathode materials Huang C; Xia X; Chi Z; Yang Z; Huang H; Chen Z; Tang W; Wu G; Chen H; Zhang W Nanoscale; 2022 Jul; 14(27):9724-9735. PubMed ID: 35762909 [TBL] [Abstract][Full Text] [Related]
7. Efficient Direct Recycling of Degraded LiMn Gao H; Yan Q; Xu P; Liu H; Li M; Liu P; Luo J; Chen Z ACS Appl Mater Interfaces; 2020 Nov; 12(46):51546-51554. PubMed ID: 33151665 [TBL] [Abstract][Full Text] [Related]
8. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data. Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331 [TBL] [Abstract][Full Text] [Related]
9. Current and future lithium-ion battery manufacturing. Liu Y; Zhang R; Wang J; Wang Y iScience; 2021 Apr; 24(4):102332. PubMed ID: 33889825 [TBL] [Abstract][Full Text] [Related]
10. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. Li Y; Sun M; Cao Y; Yu K; Fan Z; Cao Y ChemSusChem; 2024 Jul; 17(13):e202301953. PubMed ID: 38409620 [TBL] [Abstract][Full Text] [Related]
11. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Wang S; Yu J Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173 [TBL] [Abstract][Full Text] [Related]
12. Environmentally-friendly lithium recycling from a spent organic li-ion battery. Renault S; Brandell D; Edström K ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568 [TBL] [Abstract][Full Text] [Related]
13. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries. Natarajan S; Boricha AB; Bajaj HC Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480 [TBL] [Abstract][Full Text] [Related]
14. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives. Hantanasirisakul K; Sawangphruk M Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621 [TBL] [Abstract][Full Text] [Related]
15. Challenges in Solvent-Free Methods for Manufacturing Electrodes and Electrolytes for Lithium-Based Batteries. Verdier N; Foran G; Lepage D; Prébé A; Aymé-Perrot D; Dollé M Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498290 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical Relithiation in Spent LiFePO Chen S; Zhang B; Yang L; Hu X; Hong N; Wang H; Huang J; Deng W; Zou G; Hou H; Ji X Inorg Chem; 2024 Sep; 63(37):17166-17175. PubMed ID: 39221868 [TBL] [Abstract][Full Text] [Related]
17. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Tao Y; Rahn CD; Archer LA; You F Sci Adv; 2021 Nov; 7(45):eabi7633. PubMed ID: 34739316 [TBL] [Abstract][Full Text] [Related]
18. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Wu Z; Zhu H; Bi H; He P; Gao S Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691 [TBL] [Abstract][Full Text] [Related]
19. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process. Luo Y; Ou L; Yin C Sci Total Environ; 2023 Jun; 875():162567. PubMed ID: 36871725 [TBL] [Abstract][Full Text] [Related]
20. Greener, Safer and Better Performing Aqueous Binder for Positive Electrode Manufacturing of Sodium Ion Batteries. Xu R; Pamidi V; Tang Y; Fuchs S; Stein HS; Dasari B; Zhao-Karger Z; Behara S; Hu Y; Trivedi S; Anji Reddy M; Barpanda P; Fichtner M ChemSusChem; 2024 Apr; 17(8):e202301154. PubMed ID: 38179813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]