BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32380557)

  • 1. A Method to Extract Feature Variables Contributed in Nonlinear Machine Learning Prediction.
    Suzuki M; Shibahara T; Muragaki Y
    Methods Inf Med; 2020 Feb; 59(1):1-8. PubMed ID: 32380557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers.
    Kang J; Ullah Z; Gwak J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the security of patients' portals and websites by detecting malicious web crawlers using machine learning techniques.
    Hosseini N; Fakhar F; Kiani B; Eslami S
    Int J Med Inform; 2019 Dec; 132():103976. PubMed ID: 31606554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning in medicine: a practical introduction.
    Sidey-Gibbons JAM; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2019 Mar; 19(1):64. PubMed ID: 30890124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics.
    Musolf AM; Holzinger ER; Malley JD; Bailey-Wilson JE
    Hum Genet; 2022 Sep; 141(9):1515-1528. PubMed ID: 34862561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study.
    Kweon S; Lee JH; Lee Y; Park YR
    J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning.
    Bowler AL; Bakalis S; Watson NJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phybrata Sensors and Machine Learning for Enhanced Neurophysiological Diagnosis and Treatment.
    Hope AJ; Vashisth U; Parker MJ; Ralston AB; Roper JM; Ralston JD
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection.
    Takahashi Y; Ueki M; Yamada M; Tamiya G; Motoike IN; Saigusa D; Sakurai M; Nagami F; Ogishima S; Koshiba S; Kinoshita K; Yamamoto M; Tomita H
    Transl Psychiatry; 2020 May; 10(1):157. PubMed ID: 32427830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning.
    Kek T; Potočnik P; Misson M; Bergant Z; Sorgente M; Govekar E; Šturm R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival prediction among heart patients using machine learning techniques.
    Almazroi AA
    Math Biosci Eng; 2022 Jan; 19(1):134-145. PubMed ID: 34902984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal bone age prediction based on a deep residual network with spatial transformer.
    Han Y; Wang G
    Comput Methods Programs Biomed; 2020 Dec; 197():105754. PubMed ID: 32957059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.