These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32380557)

  • 21. Evaluation of Three Feature Dimension Reduction Techniques for Machine Learning-Based Crop Yield Prediction Models.
    Pham HT; Awange J; Kuhn M
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department.
    Kuo YH; Chan NB; Leung JMY; Meng H; So AM; Tsoi KKF; Graham CA
    Int J Med Inform; 2020 Jul; 139():104143. PubMed ID: 32330853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer learning for informative-frame selection in laryngoscopic videos through learned features.
    Patrini I; Ruperti M; Moccia S; Mattos LS; Frontoni E; De Momi E
    Med Biol Eng Comput; 2020 Jun; 58(6):1225-1238. PubMed ID: 32212052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features.
    Taye GT; Hwang HJ; Lim KM
    Sci Rep; 2020 Apr; 10(1):6769. PubMed ID: 32317680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluations on supervised learning methods in the calibration of seven-hole pressure probes.
    Zhou S; Wu G; Dong Y; Ni Y; Hao Y; Jiang Y; Zhou C; Tao Z
    PLoS One; 2023; 18(1):e0277672. PubMed ID: 36689455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches.
    Stamate D; Katrinecz A; Stahl D; Verhagen SJW; Delespaul PAEG; van Os J; Guloksuz S
    Schizophr Res; 2019 Jul; 209():156-163. PubMed ID: 31104913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification.
    Park KH; Batbaatar E; Piao Y; Theera-Umpon N; Ryu KH
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33672300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features.
    Bernatz S; Ackermann J; Mandel P; Kaltenbach B; Zhdanovich Y; Harter PN; Döring C; Hammerstingl R; Bodelle B; Smith K; Bucher A; Albrecht M; Rosbach N; Basten L; Yel I; Wenzel M; Bankov K; Koch I; Chun FK; Köllermann J; Wild PJ; Vogl TJ
    Eur Radiol; 2020 Dec; 30(12):6757-6769. PubMed ID: 32676784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

  • 32. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry.
    Puthongkham P; Wirojsaengthong S; Suea-Ngam A
    Analyst; 2021 Oct; 146(21):6351-6364. PubMed ID: 34585185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting sensory evaluation of spinach freshness using machine learning model and digital images.
    Koyama K; Tanaka M; Cho BH; Yoshikawa Y; Koseki S
    PLoS One; 2021; 16(3):e0248769. PubMed ID: 33739969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database.
    Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T
    J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning.
    Xu T; Coco G; Neale M
    Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection.
    Takahashi Y; Ueki M; Yamada M; Tamiya G; Motoike IN; Saigusa D; Sakurai M; Nagami F; Ogishima S; Koshiba S; Kinoshita K; Yamamoto M; Tomita H
    Transl Psychiatry; 2020 May; 10(1):157. PubMed ID: 32427830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning.
    Bowler AL; Bakalis S; Watson NJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal.
    Ebrahimzadeh E; Kalantari M; Joulani M; Shahraki RS; Fayaz F; Ahmadi F
    Comput Methods Programs Biomed; 2018 Oct; 165():53-67. PubMed ID: 30337081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.