These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 32380699)
1. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Yao T; Baker MB; Moroni L Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32380699 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Zhao Q; Zhou Y; Wang M Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508 [TBL] [Abstract][Full Text] [Related]
3. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Anjum S; Rahman F; Pandey P; Arya DK; Alam M; Rajinikanth PS; Ao Q Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012473 [TBL] [Abstract][Full Text] [Related]
4. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Wu S; Wang Y; Streubel PN; Duan B Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251 [TBL] [Abstract][Full Text] [Related]
5. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Foraida ZI; Kamaldinov T; Nelson DA; Larsen M; Castracane J Acta Biomater; 2017 Oct; 62():116-127. PubMed ID: 28801269 [TBL] [Abstract][Full Text] [Related]
6. Sustained release of basic fibroblast growth factor in micro/nanofibrous scaffolds promotes annulus fibrosus regeneration. Tu Z; Han F; Zhu Z; Yu Q; Liu C; Bao Y; Li B; Zhou F Acta Biomater; 2023 Aug; 166():241-253. PubMed ID: 37230436 [TBL] [Abstract][Full Text] [Related]
7. The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Casanova MR; Reis RL; Martins A; Neves NM Adv Exp Med Biol; 2018; 1058():247-263. PubMed ID: 29691825 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Asadian M; Chan KV; Norouzi M; Grande S; Cools P; Morent R; De Geyter N Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936372 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Lin W; Chen M; Qu T; Li J; Man Y J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
11. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related]
12. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Gandhimathi C; Venugopal JR; Bhaarathy V; Ramakrishna S; Kumar SD Int J Nanomedicine; 2014; 9():4709-22. PubMed ID: 25336949 [TBL] [Abstract][Full Text] [Related]
13. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
14. Self-assembling peptide nanofibrous scaffolds for tissue engineering: novel approaches and strategies for effective functional regeneration. Nune M; Kumaraswamy P; Krishnan UM; Sethuraman S Curr Protein Pept Sci; 2013 Feb; 14(1):70-84. PubMed ID: 23544748 [TBL] [Abstract][Full Text] [Related]
15. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. Chaka KT; Cao K; Tesfaye T; Qin X J Biomater Sci Polym Ed; 2024 Sep; ():1-43. PubMed ID: 39259663 [TBL] [Abstract][Full Text] [Related]
16. Current progress in application of polymeric nanofibers to tissue engineering. Nemati S; Kim SJ; Shin YM; Shin H Nano Converg; 2019 Nov; 6(1):36. PubMed ID: 31701255 [TBL] [Abstract][Full Text] [Related]
17. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Chahal S; Kumar A; Hussian FSJ J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic electrospun nanofibrous structures for tissue engineering. Wang X; Ding B; Li B Mater Today (Kidlington); 2013 Jun; 16(6):229-241. PubMed ID: 25125992 [TBL] [Abstract][Full Text] [Related]
20. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]