These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32381021)

  • 1. Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes.
    Shafquat A; Crystal RG; Mezey JG
    BMC Bioinformatics; 2020 May; 21(1):178. PubMed ID: 32381021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data mining approaches for genome-wide association of mood disorders.
    Pirooznia M; Seifuddin F; Judy J; Mahon PB; ; Potash JB; Zandi PP
    Psychiatr Genet; 2012 Apr; 22(2):55-61. PubMed ID: 22081063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and accurate Bayesian polygenic risk modeling with variational inference.
    Zabad S; Gravel S; Li Y
    Am J Hum Genet; 2023 May; 110(5):741-761. PubMed ID: 37030289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured Genome-Wide Association Studies with Bayesian Hierarchical Variable Selection.
    Zhao Y; Zhu H; Lu Z; Knickmeyer RC; Zou F
    Genetics; 2019 Jun; 212(2):397-415. PubMed ID: 31010934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Bayesian variational spike and slab model in a genome-wide association study for finding associated loci with bipolar disorder.
    Kazemi Naeini M; Akbarzadeh M; Kazemi I; Speed D; Hosseini SM
    Ann Hum Genet; 2024 May; 88(3):212-246. PubMed ID: 38161273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GESLM algorithm for detecting causal SNPs in GWAS with multiple phenotypes.
    Lyu R; Sun J; Xu D; Jiang Q; Wei C; Zhang Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34323927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome wide association studies in presence of misclassified binary responses.
    Smith S; Hay el H; Farhat N; Rekaya R
    BMC Genet; 2013 Dec; 14():124. PubMed ID: 24369108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization.
    Gagliano SA; Barnes MR; Weale ME; Knight J
    PLoS One; 2014; 9(5):e98122. PubMed ID: 24844982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bayesian method for evaluating and discovering disease loci associations.
    Jiang X; Barmada MM; Cooper GF; Becich MJ
    PLoS One; 2011; 6(8):e22075. PubMed ID: 21853025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A selective inference approach for false discovery rate control using multiomics covariates yields insights into disease risk.
    Yurko R; G'Sell M; Roeder K; Devlin B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15028-15035. PubMed ID: 32522875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning the optimal scale for GWAS through hierarchical SNP aggregation.
    Guinot F; Szafranski M; Ambroise C; Samson F
    BMC Bioinformatics; 2018 Nov; 19(1):459. PubMed ID: 30497371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility in the UK biobank of genome-wide significant signals discovered in earlier genome-wide association studies.
    O'Sullivan JW; Ioannidis JPA
    Sci Rep; 2021 Sep; 11(1):18625. PubMed ID: 34545148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LLR: a latent low-rank approach to colocalizing genetic risk variants in multiple GWAS.
    Liu J; Wan X; Wang C; Yang C; Zhou X; Yang C
    Bioinformatics; 2017 Dec; 33(24):3878-3886. PubMed ID: 28961754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.
    Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F;
    Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.