These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32381284)

  • 1. The differences in measured prostate material properties between probing and unconfined compression testing methods.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    Med Eng Phys; 2020 Jun; 80():44-51. PubMed ID: 32381284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical properties of abdominal organs under tension with special reference to increasing strain rate.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    J Biomech; 2020 Aug; 109():109914. PubMed ID: 32807339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves.
    Fraser S; Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM
    J Mech Behav Biomed Mater; 2021 Sep; 121():104624. PubMed ID: 34139483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate dependent biomechanical properties of corneal stroma in unconfined compression.
    Hatami-Marbini H; Etebu E
    Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
    Protsenko DE; Zemek A; Wong BJ
    Lasers Surg Med; 2008 Mar; 40(3):202-10. PubMed ID: 18366085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and mechanical properties of high-weight-bearing and low-weight-bearing areas of hip cartilage at the micro- and nano-levels.
    Guo JB; Liang T; Che YJ; Yang HL; Luo ZP
    BMC Musculoskelet Disord; 2020 Jul; 21(1):425. PubMed ID: 32616028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone.
    Katzenberger MJ; Albert DL; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103410. PubMed ID: 31655338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of rib cortical bone compressive and tensile material properties: Trends with age, sex, and loading rate.
    Albert DL; Katzenberger MJ; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2021 Oct; 122():104668. PubMed ID: 34265671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation.
    Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Hirvonen J; Helminen HJ; Jurvelin JS
    J Biomech; 2002 Jul; 35(7):903-9. PubMed ID: 12052392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do denture processing techniques affect the mechanical properties of denture teeth?
    Clements JL; Tantbirojn D; Versluis A; Cagna DR
    J Prosthet Dent; 2018 Aug; 120(2):246-251. PubMed ID: 29551379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the mechanical properties for cranial bones of 8-week-old piglets: the effect of strain rate and region.
    Li Z; Wang G; Ji C; Jiang J; Wang J; Wang J
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1697-1707. PubMed ID: 31119413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.