These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32381482)

  • 21. Unraveling multifaceted contributions of small regulatory RNAs to photomorphogenic development in Arabidopsis.
    Lin MC; Tsai HL; Lim SL; Jeng ST; Wu SH
    BMC Genomics; 2017 Jul; 18(1):559. PubMed ID: 28738828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small RNAs: The Essential Regulators in Plant Thermotolerance.
    Zuo ZF; He W; Li J; Mo B; Liu L
    Front Plant Sci; 2021; 12():726762. PubMed ID: 34603356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants.
    Deng P; Muhammad S; Cao M; Wu L
    Plant Biotechnol J; 2018 May; 16(5):965-975. PubMed ID: 29327403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mobile Small RNAs: Important Messengers for Long-Distance Communication in Plants.
    Yan Y; Ham BK
    Front Plant Sci; 2022; 13():928729. PubMed ID: 35783973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A potential role of microRNAs in plant response to metal toxicity.
    Yang ZM; Chen J
    Metallomics; 2013 Sep; 5(9):1184-90. PubMed ID: 23579282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-Kingdom Small RNAs Among Animals, Plants and Microbes.
    Zeng J; Gupta VK; Jiang Y; Yang B; Gong L; Zhu H
    Cells; 2019 Apr; 8(4):. PubMed ID: 31018602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis.
    Modepalli V; Fridrich A; Agron M; Moran Y
    PLoS Genet; 2018 Aug; 14(8):e1007590. PubMed ID: 30118479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Profiling of small RNAs involved in plant-pathogen interactions.
    Niu D; Wang Z; Wang S; Qiao L; Zhao H
    Methods Mol Biol; 2015; 1287():61-79. PubMed ID: 25740356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long Nonprotein-Coding RNAs in Plants.
    Jouannet V; Crespi M
    Prog Mol Subcell Biol; 2011; 51():179-200. PubMed ID: 21287139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNAs with macro-effects on plant stress responses.
    Sunkar R
    Semin Cell Dev Biol; 2010 Oct; 21(8):805-11. PubMed ID: 20398781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Viral Suppressor Modulates the Plant Immune Response Early in Infection by Regulating MicroRNA Activity.
    Pertermann R; Tamilarasan S; Gursinsky T; Gambino G; Schuck J; Weinholdt C; Lilie H; Grosse I; Golbik RP; Pantaleo V; Behrens SE
    mBio; 2018 Apr; 9(2):. PubMed ID: 29691336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Northern Blot Analysis of microRNAs and Other Small RNAs in Plants.
    De la Rosa C; Reyes JL
    Methods Mol Biol; 2019; 1932():121-129. PubMed ID: 30701496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The entangled history of animal and plant microRNAs.
    Reis RS
    Funct Integr Genomics; 2017 May; 17(2-3):127-134. PubMed ID: 27549410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles.
    Sattar S; Thompson GA
    Front Plant Sci; 2016; 7():1241. PubMed ID: 27625654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance.
    Kumar V; Khare T; Shriram V; Wani SH
    Plant Cell Rep; 2018 Jan; 37(1):61-75. PubMed ID: 28951953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small but mighty RNA-mediated interference in plants.
    Pattanayak D; Agarwal S; Sumathi S; Chakrabarti SK; Naik PS; Khurana SM
    Indian J Exp Biol; 2005 Jan; 43(1):7-24. PubMed ID: 15691061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Transcriptomics of Plants.
    Nejat N; Ramalingam A; Mantri N
    Adv Biochem Eng Biotechnol; 2018; 164():161-185. PubMed ID: 29392354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs.
    Chávez Montes RA; de Fátima Rosas-Cárdenas F; De Paoli E; Accerbi M; Rymarquis LA; Mahalingam G; Marsch-Martínez N; Meyers BC; Green PJ; de Folter S
    Nat Commun; 2014 Apr; 5():3722. PubMed ID: 24759728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal expression profile of novel and known small RNAs throughout rice plant development focussing on seed tissues.
    Meijer A; De Meyer T; Vandepoele K; Kyndt T
    BMC Genomics; 2022 Jan; 23(1):44. PubMed ID: 35012466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turnover of mature miRNAs and siRNAs in plants and algae.
    Cerutti H; Ibrahim F
    Adv Exp Med Biol; 2010; 700():124-39. PubMed ID: 21627035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.