These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32381592)

  • 1. Making ultrastrong steel tough by grain-boundary delamination.
    Liu L; Yu Q; Wang Z; Ell J; Huang MX; Ritchie RO
    Science; 2020 Jun; 368(6497):1347-1352. PubMed ID: 32381592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test.
    Inoue T; Kimura Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Significance of Coherent Transformation on Grain Refinement and Consequent Enhancement in Toughness.
    Li X; Zhao J; Dong L; Misra RDK; Wang X; Wang X; Shang C
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
    Inoue T; Kimura Y; Ochiai S
    Sci Technol Adv Mater; 2012 Jun; 13(3):035005. PubMed ID: 27877493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse temperature dependence of toughness in an ultrafine grain-structure steel.
    Kimura Y; Inoue T; Yin F; Tsuzaki K
    Science; 2008 May; 320(5879):1057-60. PubMed ID: 18497294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Correlation Between Fracture Toughness and Charpy Impact Energy of Cryogenic Steel Welds.
    An G; Hong S; Park J; Han I
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4921-4925. PubMed ID: 33691891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toughening materials: enhancing resistance to fracture.
    Ritchie RO
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200437. PubMed ID: 34148425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Description of External Force Induced Phase Transformation in Silicon-Manganese (Si-Mn) Transformation Induced Plasticity (TRIP) Steels.
    He Z; Liu H; Zhu Z; Zheng W; He Y; Li L
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural Influences on Fracture at Prior Austenite Grain Boundaries in Dual-Phase Steels.
    Sharma L; Peerlings RHJ; Geers MGD; Roters F
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Oxide Metallurgy on Inclusions in 125 ksi Grade OCTG Steel with Sulfide Stress Corrosion Resistance.
    Zhang S; Li Y; Wang P; Zhu F; Yang Y; Xiao B
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Tempforming on Strength and Toughness of Medium-Carbon Low-Alloy Steel.
    Yuzbekova D; Dudko V; Pydrin A; Gaidar S; Mironov S; Kaibyshev R
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making large-size fail-safe steel by deformation-assisted tempering process.
    Fan K; Liu B; Liu T; Yin F; Belyakov A; Luo Z
    Sci Rep; 2024 Sep; 14(1):22345. PubMed ID: 39333600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Factors Governing Austenite Stability: Intrinsic versus Extrinsic.
    He B
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32759813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy.
    Choisez L; Ding L; Marteleur M; Idrissi H; Pardoen T; Jacques PJ
    Nat Commun; 2020 Apr; 11(1):2110. PubMed ID: 32355157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Texture on Impact Toughness of Ferritic Fe-20Cr-5Al Oxide Dispersion Strengthened Steel.
    Sánchez-Gutiérrez J; Chao J; Vivas J; Galvez F; Capdevila C
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels.
    Ding R; Yao Y; Sun B; Liu G; He J; Li T; Wan X; Dai Z; Ponge D; Raabe D; Zhang C; Godfrey A; Miyamoto G; Furuhara T; Yang Z; van der Zwaag S; Chen H
    Sci Adv; 2020 Mar; 6(13):eaay1430. PubMed ID: 32258395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-mechanisms of failure in nano-structured maraging steels characterised through
    Jacob K; Sahasrabuddhe H; Hohenwarter A; Dixit S; Jaya BN
    Nanotechnology; 2022 Oct; 34(2):. PubMed ID: 36167030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgranular Cracking in a Liquid Zn Embrittled High Strength Steel.
    Bhattacharya D; Cho L; Van der Aa E; Ghassemi-Armaki H; Pichler A; Findley KO; Speer JG
    Scr Mater; 2020; 175():. PubMed ID: 32165855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Operational Degradation of Pipeline Steels.
    Nykyforchyn H; Zvirko O; Dzioba I; Krechkovska H; Hredil M; Tsyrulnyk O; Student O; Lipiec S; Pala R
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.