BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32381836)

  • 41. Effect of loading force on the dissolution behavior and surface properties of nickel-titanium orthodontic archwires in artificial saliva.
    Liu JK; Lee TM; Liu IH
    Am J Orthod Dentofacial Orthop; 2011 Aug; 140(2):166-76. PubMed ID: 21803253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Force-deflection properties of initial orthodontic archwires.
    Quintão CC; Cal-Neto JP; Menezes LM; Elias CN
    World J Orthod; 2009; 10(1):29-32. PubMed ID: 19388430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stability of beta-titanium T-loop springs preactivated by gradual curvature.
    Caldas SGFR; Martins RP; Araújo ME; Galvão MR; Silva Júnior RSD; Martins LP
    Dental Press J Orthod; 2017; 22(6):61-67. PubMed ID: 29364381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of force produced by nickel-titanium superelastic archwires at large deflections.
    Muraviev SE; Ospanova GB; Shlyakhova MY
    Am J Orthod Dentofacial Orthop; 2001 Jun; 119(6):604-9. PubMed ID: 11395703
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of elastic properties of nickel-titanium orthodontic archwires.
    Sarul M; Kowala B; Antoszewska J
    Adv Clin Exp Med; 2013; 22(2):253-60. PubMed ID: 23709382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Force system developed from closed coil springs.
    Melsen B; Topp LF; Melsen HM; Terp S
    Eur J Orthod; 1994 Dec; 16(6):531-9. PubMed ID: 7720798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rate of tooth movement under heavy and light continuous orthodontic forces.
    Yee JA; Türk T; Elekdağ-Türk S; Cheng LL; Darendeliler MA
    Am J Orthod Dentofacial Orthop; 2009 Aug; 136(2):150.e1-9; discussion 150-1. PubMed ID: 19651334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Biomechanical analysis of arch-guided molar distalization with super-elastic nickel-titanium springs].
    Schneevoigt R; Bourauel C; Harzer W; Eckardt L
    Biomed Tech (Berl); 1998 May; 43(5):144-50. PubMed ID: 9616994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A clinical comparison between nickel titanium springs and elastomeric chains.
    Bokas J; Woods M
    Aust Orthod J; 2006 May; 22(1):39-46. PubMed ID: 16792244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does self-ligating brackets type influence the hysteresis, activation and deactivation forces of superelastic NiTi archwires?
    Rino Neto J; Queiroz GV; de Paiva JB; Ballester RY
    Dental Press J Orthod; 2013; 18(1):81-5. PubMed ID: 23876954
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: a randomized controlled clinical trial.
    Keng FY; Quick AN; Swain MV; Herbison P
    Eur J Orthod; 2012 Feb; 34(1):33-8. PubMed ID: 21415288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparing patient-centered outcomes and efficiency of space closure between nickel-titanium closed-coil springs and elastomeric power chains during orthodontic treatment.
    Badran SA; Al-Zaben JM; Al-Taie LM; Tbeishi H; Al-Omiri MK
    Angle Orthod; 2022 Jul; 92(4):471-477. PubMed ID: 35348615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Displacement and stress distribution of Kilroy spring and nickel-titanium closed-coil spring during traction of palatally impacted canine: A 3-dimensional finite element analysis.
    Lena Sezici Y; Gediz M; Akış AA; Sarı G; Duran GS; Dindaroğlu F
    Orthod Craniofac Res; 2020 Nov; 23(4):471-478. PubMed ID: 32492259
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DSC analysis and evaluation of forces released on deactivation of 0.40-mm (0.016") orthodontic thermo-activated NiTi wires: An in vitro study.
    Sapata VM; Sapata DM; Araújo Gurgel J; Medina Neto A; Ramos AL
    J Dent Res Dent Clin Dent Prospects; 2020; 14(1):12-18. PubMed ID: 32454953
    [No Abstract]   [Full Text] [Related]  

  • 55. Intrusion of palatally displaced maxillary lateral incisors using nickel titanium closed-coil springs.
    Chun YS; Kim M; Lee SH; Roh G
    J Clin Orthod; 2015 Apr; 49(4):270-2. PubMed ID: 26105068
    [No Abstract]   [Full Text] [Related]  

  • 56. Welding strength of NiTi wires.
    Mesquita TR; Martins LP; Martins RP
    Dental Press J Orthod; 2018; 23(3):58-62. PubMed ID: 30088566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Force degradation of two orthodontic accessories analyzed in vivo and in vitro.
    Yang L; Lv C; Li X; Feng J
    BMC Oral Health; 2023 Dec; 23(1):1001. PubMed ID: 38097980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.
    Ghazal AR; Hajeer MY; Al-Sabbagh R; Alghoraibi I; Aldiry A
    Prog Orthod; 2015; 16():9. PubMed ID: 26061986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aesthetic nickel titanium wires--how much do they deliver?
    Kaphoor AA; Sundareswaran S
    Eur J Orthod; 2012 Oct; 34(5):603-9. PubMed ID: 21791711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical properties of NiTi and CuNiTi shape-memory wires used in orthodontic treatment. Part 1: stress-strain tests.
    Gravina MA; Brunharo IH; Canavarro C; Elias CN; Quintão CC
    Dental Press J Orthod; 2013; 18(4):35-42. PubMed ID: 24262415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.