These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32382480)

  • 1. Semi-Flooded Sulfur Cathode with Ultralean Absorbed Electrolyte in Li-S Battery.
    Xie Y; Pan G; Jin Q; Qi X; Wang T; Li W; Xu H; Zheng Y; Li S; Qie L; Huang Y; Li J
    Adv Sci (Weinh); 2020 May; 7(9):1903168. PubMed ID: 32382480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary Transition Metal Sulfide as High Real Energy Cathode for Lithium-Sulfur Pouch Cell Under Lean Electrolyte Conditions.
    Guo H; Hu J; Yuan H; Wu N; Li Y; Liu G; Qin N; Liao K; Li Z; Luo W; Gu S; Wan W; Shi B; Xu X; Yang Q; Shi J; Lu Z
    Small Methods; 2022 Feb; 6(2):e2101402. PubMed ID: 35174999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes.
    Motoyoshi R; Li S; Tsuzuki S; Ghosh A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45403-45413. PubMed ID: 36174225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralean Electrolyte Li-S Battery by Avoiding Gelation Catastrophe.
    Wang L; Xie Y; Qi X; Jiang R; Huang K; Qie L; Li S
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46457-46470. PubMed ID: 36194475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium Aluminate Nanoflakes as an Additive to Sulfur Cathodes for Enhanced Mass Transport in High-Energy-Density Lithium-Sulfur Pouch Cells Utilizing Sparingly Solvating Electrolytes.
    Ghosh A; Liu J; Li S; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2023 May; 15(19):23104-23114. PubMed ID: 37129362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells.
    Liu T; Li H; Yue J; Feng J; Mao M; Zhu X; Hu YS; Li H; Huang X; Chen L; Suo L
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17547-17555. PubMed ID: 34028151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites.
    Zhao C; Xu GL; Yu Z; Zhang L; Hwang I; Mo YX; Ren Y; Cheng L; Sun CJ; Ren Y; Zuo X; Li JT; Sun SG; Amine K; Zhao T
    Nat Nanotechnol; 2021 Feb; 16(2):166-173. PubMed ID: 33230316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries.
    Wang H; Wei Y; Wang G; Pu Y; Yuan L; Liu C; Wang Q; Zhang Y; Wu H
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201823. PubMed ID: 35712758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathode Kinetics Evaluation in Lean-Electrolyte Lithium-Sulfur Batteries.
    Chen ZX; Cheng Q; Li XY; Li Z; Song YW; Sun F; Zhao M; Zhang XQ; Li BQ; Huang JQ
    J Am Chem Soc; 2023 Aug; 145(30):16449-16457. PubMed ID: 37427442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routes to Electrochemically Stable Sulfur Cathodes for Practical Li-S Batteries.
    Li H; Yang H; Ai X
    Adv Mater; 2023 Oct; ():e2305038. PubMed ID: 37867204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling High-Energy-Density Cathode for Lithium-Sulfur Batteries.
    Lu D; Li Q; Liu J; Zheng J; Wang Y; Ferrara S; Xiao J; Zhang JG; Liu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23094-23102. PubMed ID: 29877693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long-Cycling Lithium-Sulfur Batteries.
    Li Z; Hou LP; Yao N; Li XY; Chen ZX; Chen X; Zhang XQ; Li BQ; Zhang Q
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202309968. PubMed ID: 37664907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Size-Controlled Sulfur Nanoparticle Cathodes for Lithium-Sulfur Aviation Batteries.
    Liu J; Cheng C; Wang T; Zhu J; Li Z; Ao G; Zhu W; Pezzotti G; Zhu J
    Small; 2023 Sep; 19(36):e2300286. PubMed ID: 37162459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving High-Performance Li-S Batteries via Polysulfide Adjoining Interface Engineering.
    Kim H; Bang S; Min KJ; Ham YG; Park SJ; Sun YK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39435-39445. PubMed ID: 34378372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries.
    Zhao C; Xu GL; Zhao T; Amine K
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17634-17640. PubMed ID: 32645250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.