These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Medicinal properties of Ocotea bullata stem bark extracts: phytochemical constituents, antioxidant and anti-inflammatory activity, cytotoxicity and inhibition of carbohydrate-metabolizing enzymes. Ogundajo AL; Adeniran LA; Ashafa AO J Integr Med; 2018 Mar; 16(2):132-140. PubMed ID: 29526237 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe Afolabi OB; Oloyede OI; Agunbiade SO J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572 [TBL] [Abstract][Full Text] [Related]
5. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. Majeed M; Majeed S; Mundkur L; Nagabhushanam K; Arumugam S; Beede K; Ali F J Sci Food Agric; 2020 Jan; 100(2):509-516. PubMed ID: 31487036 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant Activity and Inhibition of Carbohydrate Digestive Enzymes Activities of Marghich M; Daoudi NE; Amrani O; Addi M; Hano C; Chen JT; Mekhfi H; Ziyyat A; Bnouham M; Aziz M Front Biosci (Schol Ed); 2022 Sep; 14(4):25. PubMed ID: 36575835 [TBL] [Abstract][Full Text] [Related]
7. Das SK; Dash S; Thatoi H; Patra JK Comb Chem High Throughput Screen; 2020; 23(9):945-954. PubMed ID: 32342807 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory and in silico molecular docking of Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa phytochemical compounds on human α-glucosidases. Nyathi B; Bvunzawabaya JT; Venissa P Mudawarima C; Manzombe E; Tsotsoro K; Selemani MA; Munyuki G; Rwere F J Ethnopharmacol; 2023 Aug; 312():116501. PubMed ID: 37100261 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory Effects of Siegesbeckia orientalis Extracts on Advanced Glycation End Product Formation and Key Enzymes Related to Metabolic Syndrome. Hung WC; Ling XH; Chang CC; Hsu HF; Wang SW; Lee YC; Luo C; Lee YT; Houng JY Molecules; 2017 Oct; 22(10):. PubMed ID: 29065451 [TBL] [Abstract][Full Text] [Related]
10. Barks of Three Wild Pyrus Taxa: Phenolic Constituents, Antioxidant Activity, and in Vitro and in Silico Investigations of α-Amylase and α-Glucosidase Inhibition. Ušjak LJ; Milutinović VM; Đorđić Crnogorac MJ; Stanojković TP; Niketić MS; Kukić-Marković JM; Petrović SD Chem Biodivers; 2021 Oct; 18(10):e2100446. PubMed ID: 34402208 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
12. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. Misbah H; Aziz AA; Aminudin N BMC Complement Altern Med; 2013 May; 13():118. PubMed ID: 23718315 [TBL] [Abstract][Full Text] [Related]
13. Chickpea (Cicer arietinum L.) Lectin Exhibit Inhibition of ACE-I, α-amylase and α-glucosidase Activity. Bhagyawant SS; Narvekar DT; Gupta N; Bhadkaria A; Gautam AK; Srivastava N Protein Pept Lett; 2019; 26(7):494-501. PubMed ID: 30919768 [TBL] [Abstract][Full Text] [Related]
14. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255 [TBL] [Abstract][Full Text] [Related]
15. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. Deo P; Hewawasam E; Karakoulakis A; Claudie DJ; Nelson R; Simpson BS; Smith NM; Semple SJ BMC Complement Altern Med; 2016 Nov; 16(1):435. PubMed ID: 27809834 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. Franco RR; da Silva Carvalho D; de Moura FBR; Justino AB; Silva HCG; Peixoto LG; Espindola FS J Ethnopharmacol; 2018 Apr; 215():140-146. PubMed ID: 29274842 [TBL] [Abstract][Full Text] [Related]
17. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Lordan S; Smyth TJ; Soler-Vila A; Stanton C; Ross RP Food Chem; 2013 Dec; 141(3):2170-6. PubMed ID: 23870944 [TBL] [Abstract][Full Text] [Related]
18. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. Ahmed D; Kumar V; Sharma M; Verma A BMC Complement Altern Med; 2014 May; 14():155. PubMed ID: 24886138 [TBL] [Abstract][Full Text] [Related]
19. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas. Adefegha SA; Oboh G Asian Pac J Trop Biomed; 2012 Oct; 2(10):774-81. PubMed ID: 23569846 [TBL] [Abstract][Full Text] [Related]
20. Mineral Analysis, Boulfia M; Lamchouri F; Toufik H Biomed Res Int; 2021; 2021():1585692. PubMed ID: 34485509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]