These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32382739)
1. mUSP: a high-accuracy map of the in situ crosstalk of ubiquitylation and SUMOylation proteome predicted via the feature enhancement approach. Xu HD; Liang RP; Wang YG; Qiu JD Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32382739 [TBL] [Abstract][Full Text] [Related]
2. An Ensemble Deep Learning based Predictor for Simultaneously Identifying Protein Ubiquitylation and SUMOylation Sites. He F; Li J; Wang R; Zhao X; Han Y BMC Bioinformatics; 2021 Oct; 22(1):519. PubMed ID: 34689734 [TBL] [Abstract][Full Text] [Related]
3. Site-Specific Systematic Analysis of Lysine Modification Crosstalk. Xu HD; Wang LN; Wen PP; Shi SP; Qiu JD Proteomics; 2018 May; 18(9):e1700292. PubMed ID: 29520963 [TBL] [Abstract][Full Text] [Related]
4. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. Zhang Y; Zeng L Plant Commun; 2020 Jul; 1(4):100041. PubMed ID: 33367245 [TBL] [Abstract][Full Text] [Related]
5. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Liu Y; Wang M; Xi J; Luo F; Li A Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096 [TBL] [Abstract][Full Text] [Related]
6. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001 [TBL] [Abstract][Full Text] [Related]
7. Systematic characterization and prediction of post-translational modification cross-talk. Huang Y; Xu B; Zhou X; Li Y; Lu M; Jiang R; Li T Mol Cell Proteomics; 2015 Mar; 14(3):761-70. PubMed ID: 25605461 [TBL] [Abstract][Full Text] [Related]
8. Systematic characterization and prediction of post-translational modification cross-talk between proteins. Huang R; Huang Y; Guo Y; Ji S; Lu M; Li T Bioinformatics; 2019 Aug; 35(15):2626-2633. PubMed ID: 30590394 [TBL] [Abstract][Full Text] [Related]
9. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines. Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456 [TBL] [Abstract][Full Text] [Related]
10. Modifications in the cellular proteome and their clinical application. Elguero B; Gonilski Pacin D; Cárdenas Figueroa C; Fuertes M; Arzt E Medicina (B Aires); 2019; 79(Spec 6/1):570-575. PubMed ID: 31864228 [TBL] [Abstract][Full Text] [Related]
11. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279 [TBL] [Abstract][Full Text] [Related]
12. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Danielsen JM; Sylvestersen KB; Bekker-Jensen S; Szklarczyk D; Poulsen JW; Horn H; Jensen LJ; Mailand N; Nielsen ML Mol Cell Proteomics; 2011 Mar; 10(3):M110.003590. PubMed ID: 21139048 [TBL] [Abstract][Full Text] [Related]
13. Towards understanding the crosstalk between protein post-translational modifications: Homo- and heterotypic PTM pair distances on protein surfaces are not random. Korkuć P; Walther D Proteins; 2017 Jan; 85(1):78-92. PubMed ID: 27802577 [TBL] [Abstract][Full Text] [Related]
14. Protein Language: Post-Translational Modifications Talking to Each Other. Vu LD; Gevaert K; De Smet I Trends Plant Sci; 2018 Dec; 23(12):1068-1080. PubMed ID: 30279071 [TBL] [Abstract][Full Text] [Related]
15. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Lv H; Zhang Y; Wang JS; Yuan SS; Sun ZJ; Dao FY; Guan ZX; Lin H; Deng KJ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864888 [TBL] [Abstract][Full Text] [Related]
16. Discriminating between lysine sumoylation and lysine acetylation using mRMR feature selection and analysis. Zhang N; Zhou Y; Huang T; Zhang YC; Li BQ; Chen L; Cai YD PLoS One; 2014; 9(9):e107464. PubMed ID: 25222670 [TBL] [Abstract][Full Text] [Related]
17. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation. Yao H; Li A; Wang M Biomed Res Int; 2015; 2015():279823. PubMed ID: 26601103 [TBL] [Abstract][Full Text] [Related]
18. Prediction of lysine ubiquitylation with ensemble classifier and feature selection. Zhao X; Li X; Ma Z; Yin M Int J Mol Sci; 2011; 12(12):8347-61. PubMed ID: 22272076 [TBL] [Abstract][Full Text] [Related]
19. SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications. Chang CC; Tung CH; Chen CW; Tu CH; Chu YW Sci Rep; 2018 Oct; 8(1):15512. PubMed ID: 30341374 [TBL] [Abstract][Full Text] [Related]
20. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Wei B; Yang F; Yu L; Qiu C Cell Mol Biol Lett; 2024 Aug; 29(1):107. PubMed ID: 39127633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]