BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32383112)

  • 1. Kinetic Milestones of Damage Recognition by DNA Glycosylases of the Helix-Hairpin-Helix Structural Superfamily.
    Kuznetsov NA; Fedorova OS
    Adv Exp Med Biol; 2020; 1241():1-18. PubMed ID: 32383112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases.
    Denver DR; Swenson SL; Lynch M
    Mol Biol Evol; 2003 Oct; 20(10):1603-11. PubMed ID: 12832627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms.
    Trasviña-Arenas CH; Demir M; Lin WJ; David SS
    DNA Repair (Amst); 2021 Dec; 108():103231. PubMed ID: 34649144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements.
    Nuñez NN; Majumdar C; Lay KT; David SS
    Methods Enzymol; 2018; 599():21-68. PubMed ID: 29746241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1.
    Kladova OA; Grin IR; Fedorova OS; Kuznetsov NA; Zharkov DO
    J Mol Biol; 2019 Mar; 431(6):1098-1112. PubMed ID: 30716333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Oct; 1840(10):3042-51. PubMed ID: 25086253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair.
    Coey CT; Drohat AC
    Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA glycosylases in the base excision repair of DNA.
    Krokan HE; Standal R; Slupphaug G
    Biochem J; 1997 Jul; 325 ( Pt 1)(Pt 1):1-16. PubMed ID: 9224623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA glycosylase recognition and catalysis.
    Fromme JC; Banerjee A; Verdine GL
    Curr Opin Struct Biol; 2004 Feb; 14(1):43-9. PubMed ID: 15102448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.
    Dizdaroglu M; Coskun E; Jaruga P
    Mutat Res Rev Mutat Res; 2017; 771():99-127. PubMed ID: 28342455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.