BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32383112)

  • 21. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of an ascidian homolog of the human 8-oxoguanine DNA glycosylase (Ogg1) that is involved in the repair of 8-oxo-7,8-dihydroguanine in DNA in Ciona intestinalis.
    Jin G; Zhang QM; Satou Y; Satoh N; Kasai H; Yonei S
    Int J Radiat Biol; 2006 Apr; 82(4):241-50. PubMed ID: 16690592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
    Mullins EA; Rodriguez AA; Bradley NP; Eichman BF
    Trends Biochem Sci; 2019 Sep; 44(9):765-781. PubMed ID: 31078398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).
    Metz AH; Hollis T; Eichman BF
    EMBO J; 2007 May; 26(9):2411-20. PubMed ID: 17410210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Insights into the Mechanism of Base Excision by MBD4.
    Pidugu LS; Bright H; Lin WJ; Majumdar C; Van Ostrand RP; David SS; Pozharski E; Drohat AC
    J Mol Biol; 2021 Jul; 433(15):167097. PubMed ID: 34107280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic Analysis of Fast Stages of Specific Lesion Recognition by DNA Repair Enzymes.
    Kuznetsov NA; Fedorova OS
    Biochemistry (Mosc); 2016 Oct; 81(10):1136-1152. PubMed ID: 27908238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A DNA glycosylase from Pyrobaculum aerophilum with an 8-oxoguanine binding mode and a noncanonical helix-hairpin-helix structure.
    Lingaraju GM; Sartori AA; Kostrewa D; Prota AE; Jiricny J; Winkler FK
    Structure; 2005 Jan; 13(1):87-98. PubMed ID: 15642264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
    Olmon ED; Delaney S
    ACS Chem Biol; 2017 Mar; 12(3):692-701. PubMed ID: 28085251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage.
    Dizdaroglu M
    Mutat Res; 2003 Oct; 531(1-2):109-26. PubMed ID: 14637249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel substrates of Escherichia coli nth protein and its kinetics for excision of modified bases from DNA damaged by free radicals.
    Dizdaroglu M; Bauche C; Rodriguez H; Laval J
    Biochemistry; 2000 May; 39(18):5586-92. PubMed ID: 10820032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-Activity Relationships Reveal Key Features of 8-Oxoguanine: A Mismatch Detection by the MutY Glycosylase.
    Manlove AH; McKibbin PL; Doyle EL; Majumdar C; Hamm ML; David SS
    ACS Chem Biol; 2017 Sep; 12(9):2335-2344. PubMed ID: 28723094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Structure and conformational dynamics of base excision repair DNA glycosylases].
    Zharkov DO
    Mol Biol (Mosk); 2007; 41(5):772-86. PubMed ID: 18240561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.
    Porello SL; Leyes AE; David SS
    Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.