BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32383112)

  • 41. DNA Deformation-Coupled Recognition of 8-Oxoguanine: Conformational Kinetic Gating in Human DNA Glycosylase.
    Li H; Endutkin AV; Bergonzo C; Fu L; Grollman A; Zharkov DO; Simmerling C
    J Am Chem Soc; 2017 Feb; 139(7):2682-2692. PubMed ID: 28098999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fold-recognition analysis predicts that the Tag protein family shares a common domain with the helix-hairpin-helix DNA glycosylases.
    Bujnicki JM; Rychlewski L
    DNA Repair (Amst); 2002 May; 1(5):391-5. PubMed ID: 12509243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transient Kinetic Methods for Mechanistic Characterization of DNA Binding and Nucleotide Flipping.
    Hendershot JM; O'Brien PJ
    Methods Enzymol; 2017; 592():377-415. PubMed ID: 28668128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and functional properties of CiNTH, an endonuclease III homologue of the ascidian Ciona intestinalis: critical role of N-terminal region.
    Kato S; Hashiguchi K; Igarashi K; Moriwaki T; Yonekura S; Zhang-Akiyama QM
    Genes Genet Syst; 2012; 87(2):115-24. PubMed ID: 22820385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
    Eichman BF; O'Rourke EJ; Radicella JP; Ellenberger T
    EMBO J; 2003 Oct; 22(19):4898-909. PubMed ID: 14517230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.
    Zhu C; Lu L; Zhang J; Yue Z; Song J; Zong S; Liu M; Stovicek O; Gao YQ; Yi C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7792-7. PubMed ID: 27354518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural bases for substrate recognition and repair system of base-excision DNA repair proteins.
    Fujii S; Yamagata Y
    Nucleic Acids Symp Ser; 2000; (44):57-8. PubMed ID: 12903266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases.
    Zharkov DO; Grollman AP
    Mutat Res; 2005 Sep; 577(1-2):24-54. PubMed ID: 15939442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate recognition by Escherichia coli MutY using substrate analogs.
    Chepanoske CL; Porello SL; Fujiwara T; Sugiyama H; David SS
    Nucleic Acids Res; 1999 Aug; 27(15):3197-204. PubMed ID: 10454618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Excision of the oxidatively formed 5-hydroxyhydantoin and 5-hydroxy-5-methylhydantoin pyrimidine lesions by Escherichia coli and Saccharomyces cerevisiae DNA N-glycosylases.
    Gasparutto D; Muller E; Boiteux S; Cadet J
    Biochim Biophys Acta; 2009 Jan; 1790(1):16-24. PubMed ID: 18983898
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of Active-Site Amino Acid Residues in Specific Recognition of DNA Lesions by Human 8-Oxoguanine-DNA Glycosylase (OGG1).
    Tyugashev TE; Vorobjev YN; Kuznetsova AA; Lukina MV; Kuznetsov NA; Fedorova OS
    J Phys Chem B; 2019 Jun; 123(23):4878-4887. PubMed ID: 31117610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities.
    Chaim IA; Nagel ZD; Jordan JJ; Mazzucato P; Ngo LP; Samson LD
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10379-E10388. PubMed ID: 29122935
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uracil DNA glycosylase: insights from a master catalyst.
    Stivers JT; Drohat AC
    Arch Biochem Biophys; 2001 Dec; 396(1):1-9. PubMed ID: 11716455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extrahelical damaged base recognition by DNA glycosylase enzymes.
    Stivers JT
    Chemistry; 2008; 14(3):786-93. PubMed ID: 18000994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
    Pelletier H; Sawaya MR; Wolfle W; Wilson SH; Kraut J
    Biochemistry; 1996 Oct; 35(39):12742-61. PubMed ID: 8841118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Excision by the human methylpurine DNA N-glycosylase of cyanuric acid, a stable and mutagenic oxidation product of 8-oxo-7,8-dihydroguanine.
    Dherin C; Gasparutto D; O'Connor TR; Cadet J; Boiteux S
    Int J Radiat Biol; 2004 Jan; 80(1):21-7. PubMed ID: 14761847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two amino acid replacements change the substrate preference of DNA mismatch glycosylase Mig.MthI from T/G to A/G.
    Fondufe-Mittendorf YN; Härer C; Kramer W; Fritz HJ
    Nucleic Acids Res; 2002 Jan; 30(2):614-21. PubMed ID: 11788726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.