These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32383589)
1. Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. Chen Y; Hozalski RM; Olmanson LG; Page BP; Finlay JC; Brezonik PL; Arnold WA Environ Sci Technol; 2020 Jun; 54(11):6671-6681. PubMed ID: 32383589 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Chen Y; Arnold WA; Griffin CG; Olmanson LG; Brezonik PL; Hozalski RM Water Res; 2019 Nov; 165():115001. PubMed ID: 31470281 [TBL] [Abstract][Full Text] [Related]
3. Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. Olmanson LG; Page BP; Finlay JC; Brezonik PL; Bauer ME; Griffin CG; Hozalski RM Sci Total Environ; 2020 Jul; 724():138141. PubMed ID: 32247976 [TBL] [Abstract][Full Text] [Related]
4. Iron influence on dissolved color in lakes of the Upper Great Lakes States. Brezonik PL; Finlay JC; Griffin CG; Arnold WA; Boardman EH; Germolus N; Hozalski RM; Olmanson LG PLoS One; 2019; 14(2):e0211979. PubMed ID: 30759145 [TBL] [Abstract][Full Text] [Related]
5. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data. Liu G; Li S; Song K; Wang X; Wen Z; Kutser T; Jacinthe PA; Shang Y; Lyu L; Fang C; Yang Y; Yang Q; Zhang B; Cheng S; Hou J J Environ Manage; 2021 May; 286():112231. PubMed ID: 33706125 [TBL] [Abstract][Full Text] [Related]
6. Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Brezonik PL; Bouchard RW; Finlay JC; Griffin CG; Olmanson LG; Anderson JP; Arnold WA; Hozalski R Ecol Appl; 2019 Apr; 29(3):e01871. PubMed ID: 30739365 [TBL] [Abstract][Full Text] [Related]
7. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM). Slonecker ET; Jones DK; Pellerin BA Mar Pollut Bull; 2016 Jun; 107(2):518-27. PubMed ID: 27004998 [TBL] [Abstract][Full Text] [Related]
8. [Study on colored dissolved organic matter concentration retrieved from Landsat/TM imagery at Taihu Lake]. Chen J; Wang BJ; Sun JH; Fu J Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):34-8. PubMed ID: 21428050 [TBL] [Abstract][Full Text] [Related]
9. Limitations of conventional approaches to identify photochemically produced reactive intermediates involved in contaminant indirect photodegradation. Milstead RP; Berg SM; Kelly BM; Knellwolf CD; Larson CJ; Wammer KH; Remucal CK Environ Sci Process Impacts; 2023 Oct; 25(10):1694-1707. PubMed ID: 37728410 [TBL] [Abstract][Full Text] [Related]
10. High Sample Throughput LED Reactor for Facile Characterization of the Quantum Yield Spectrum of Photochemically Produced Reactive Intermediates. Wu B; Liu T; Wang Y; Zhao G; Chen B; Chu C Environ Sci Technol; 2021 Dec; 55(23):16204-16214. PubMed ID: 34553927 [TBL] [Abstract][Full Text] [Related]
11. Pesticide photolysis in prairie potholes: probing photosensitized processes. Zeng T; Arnold WA Environ Sci Technol; 2013 Jul; 47(13):6735-45. PubMed ID: 23116462 [TBL] [Abstract][Full Text] [Related]
12. Limitations on using CDOM as a proxy for DOC in temperate lakes. Griffin CG; Finlay JC; Brezonik PL; Olmanson L; Hozalski RM Water Res; 2018 Nov; 144():719-727. PubMed ID: 30099300 [TBL] [Abstract][Full Text] [Related]
13. Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden. Koehler B; Barsotti F; Minella M; Landelius T; Minero C; Tranvik LJ; Vione D Water Res; 2018 Feb; 129():94-104. PubMed ID: 29132125 [TBL] [Abstract][Full Text] [Related]
14. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface. Wu B; Zhou C; Zhao G; Wang J; Dai H; Liu T; Zheng X; Chen B; Chu C Water Res; 2022 Sep; 223():118971. PubMed ID: 35977437 [TBL] [Abstract][Full Text] [Related]
15. The effect of probe choice and solution conditions on the apparent photoreactivity of dissolved organic matter. Maizel AC; Remucal CK Environ Sci Process Impacts; 2017 Aug; 19(8):1040-1050. PubMed ID: 28696468 [TBL] [Abstract][Full Text] [Related]
16. Influence of dissolved organic matter on carbonyl sulfide and carbon disulfide formation from dimethyl sulfide during sunlight photolysis. Modiri Gharehveran M; Shah AD Water Environ Res; 2021 Dec; 93(12):2982-2997. PubMed ID: 34595800 [TBL] [Abstract][Full Text] [Related]
17. Quantification of seasonal photo-induced formation of reactive intermediates in a municipal sewage lagoon upon sunlight exposure. Wang Y; Fan L; Jones OAH; Roddick F Sci Total Environ; 2021 Apr; 765():142733. PubMed ID: 33572041 [TBL] [Abstract][Full Text] [Related]
18. Assessing the quantum yield spectrum of photochemically produced reactive intermediates from black carbon of various sources and properties. Wang Y; Wu B; Zheng X; Chen B; Chu C Water Res; 2023 Feb; 229():119450. PubMed ID: 36495853 [TBL] [Abstract][Full Text] [Related]
19. Using CDOM spectral shape information to improve the estimation of DOC concentration in inland waters: A case study of Andean Patagonian Lakes. De Stefano LG; Valdivia AS; Gianello D; Gerea M; Reissig M; García PE; García RD; Cárdenas CS; Diéguez MC; Queimaliños CP; Pérez GL Sci Total Environ; 2022 Jun; 824():153752. PubMed ID: 35176388 [TBL] [Abstract][Full Text] [Related]
20. The substantial generation of photochemically produced reactive intermediates (PPRIs) in algae-type zones from one large shallow lake promoted the removal of organic pollutants. Li W; Jin W; Wu D; Wang C; Xu H; Song N Sci Total Environ; 2024 Dec; 954():176821. PubMed ID: 39395495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]