These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32383870)

  • 1. Duplex DNA Is Weakened in Nanoconfinement.
    Jonchhe S; Pandey S; Karna D; Pokhrel P; Cui Y; Mishra S; Sugiyama H; Endo M; Mao H
    J Am Chem Soc; 2020 Jun; 142(22):10042-10049. PubMed ID: 32383870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    J Am Chem Soc; 2006 Jun; 128(24):7957-63. PubMed ID: 16771510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-Quadruplex and I-Motif Structures within the Telomeric DNA Duplex. A Molecular Dynamics Analysis of Protonation States as Factors Affecting Their Stability.
    Wolski P; Nieszporek K; Panczyk T
    J Phys Chem B; 2019 Jan; 123(2):468-479. PubMed ID: 30589547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of unfolding and relative stabilities of G-quadruplex and I-motif noncanonical DNA structures analyzed in biased molecular dynamics simulations.
    Panczyk T; Wojton P; Wolski P
    Biophys Chem; 2019 Jul; 250():106173. PubMed ID: 31005696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures.
    Jonchhe S; Pandey S; Emura T; Hidaka K; Hossain MA; Shrestha P; Sugiyama H; Endo M; Mao H
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9539-9544. PubMed ID: 30181280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study.
    Isaksson J; Zamaratski E; Maltseva TV; Agback P; Kumar A; Chattopadhyaya J
    J Biomol Struct Dyn; 2001 Jun; 18(6):783-806. PubMed ID: 11444368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of the hairpin to mismatched duplex transition of d(GCCGCAGC) on NaCl solution.
    Garcia AE; Gupta G; Soumpasis DM; Tung CS
    J Biomol Struct Dyn; 1990 Aug; 8(1):173-86. PubMed ID: 2275792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of locked nucleic acid modified complementary strand in quadruplex/Watson-Crick duplex equilibrium.
    Kumar N; Maiti S
    J Phys Chem B; 2007 Oct; 111(42):12328-37. PubMed ID: 17914789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors regulating thermodynamic stability of DNA structures under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2006; (50):203-4. PubMed ID: 17150888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution equilibria of cytosine- and guanine-rich sequences near the promoter region of the n-myc gene that contain stable hairpins within lateral loops.
    Benabou S; Ferreira R; Aviñó A; González C; Lyonnais S; Solà M; Eritja R; Jaumot J; Gargallo R
    Biochim Biophys Acta; 2014 Jan; 1840(1):41-52. PubMed ID: 24012973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences.
    König SL; Huppert JL; Sigel RK; Evans AC
    Nucleic Acids Res; 2013 Aug; 41(15):7453-61. PubMed ID: 23771141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix.
    Phan AT; Mergny JL
    Nucleic Acids Res; 2002 Nov; 30(21):4618-25. PubMed ID: 12409451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates.
    Hardin CC; Henderson E; Watson T; Prosser JK
    Biochemistry; 1991 May; 30(18):4460-72. PubMed ID: 2021636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplex formation in a G-quadruplex bulge.
    Ngoc Nguyen TQ; Lim KW; Phan AT
    Nucleic Acids Res; 2020 Oct; 48(18):10567-10575. PubMed ID: 32960213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the interaction of the palmatine alkaloid with hybrid G-quadruplex/duplex and i-motif/duplex DNA structures.
    Ruiz N; Jarosova P; Taborsky P; Gargallo R
    Biophys Chem; 2022 Feb; 281():106715. PubMed ID: 34784553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural competition involving G-quadruplex DNA and its complement.
    Li W; Miyoshi D; Nakano S; Sugimoto N
    Biochemistry; 2003 Oct; 42(40):11736-44. PubMed ID: 14529284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of adjacent triplex-duplex domainsin DNA.
    Nam KH; Abhiraman S; Wartell RM
    Nucleic Acids Res; 1999 Feb; 27(3):859-65. PubMed ID: 9889284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores.
    Bošković F; Zhu J; Chen K; Keyser UF
    Nano Lett; 2019 Nov; 19(11):7996-8001. PubMed ID: 31577148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined space facilitates G-quadruplex formation.
    Shrestha P; Jonchhe S; Emura T; Hidaka K; Endo M; Sugiyama H; Mao H
    Nat Nanotechnol; 2017 Jul; 12(6):582-588. PubMed ID: 28346457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.