These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32383952)

  • 1. Correlation between Near-Field Enhancement and Dephasing Time in Plasmonic Dimers.
    Li Y; Sun Q; Zu S; Shi X; Liu Y; Hu X; Ueno K; Gong Q; Misawa H
    Phys Rev Lett; 2020 Apr; 124(16):163901. PubMed ID: 32383952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy.
    Sun Q; Yu H; Ueno K; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Mar; 10(3):3835-42. PubMed ID: 26878248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes.
    Yang J; Sun Q; Ueno K; Shi X; Oshikiri T; Misawa H; Gong Q
    Nat Commun; 2018 Nov; 9(1):4858. PubMed ID: 30451866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon dephasing time and optical field enhancement in a plasmonic nanobowl substrate studied by scanning near-field optical microscopy.
    Hasegawa S; Kanoda M; Tamura M; Hayashi K; Tokonami S; Iida T; Imura K
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure.
    Xu Y; Qin Y; Ji B; Song X; Lin J
    Opt Express; 2020 Mar; 28(7):9310-9319. PubMed ID: 32225540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-plasmon coupling probed by ultrafast, strong-field photoemission with <7 Å sensitivity.
    Budai J; Pápa Z; Márton I; Wróbel P; Stefaniuk T; Márton Z; Rácz P; Dombi P
    Nanoscale; 2018 Aug; 10(34):16261-16267. PubMed ID: 30124717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection.
    Kitajima Y; Sakamoto H; Ueno K
    Nanoscale; 2021 Mar; 13(10):5187-5201. PubMed ID: 33687413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Properties of Plasmonic Mirror-Image Nanoepsilon.
    Lin JY; Tsai CY; Lin PT; Hsu TE; Hsiao CF; Lee PT
    Nanoscale Res Lett; 2016 Dec; 11(1):327. PubMed ID: 27405466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual gold dimers investigated by far- and near-field imaging.
    Lereu AL; Sanchez-Mosteiro G; Ghenuche P; Quidant R; van Hulst NF
    J Microsc; 2008 Feb; 229(Pt 2):254-8. PubMed ID: 18304081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers.
    Huang Y; Zhou Q; Hou M; Ma L; Zhang Z
    Phys Chem Chem Phys; 2015 Nov; 17(43):29293-8. PubMed ID: 26467684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror.
    Huang Y; Ma L; Hou M; Li J; Xie Z; Zhang Z
    Sci Rep; 2016 Jul; 6():30011. PubMed ID: 27418039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations.
    Barr JW; Gomrok S; Chaffin E; Huang X; Wang Y
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5260-5268. PubMed ID: 34367408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
    Zhang T; Gao N; Li S; Lang MJ; Xu QH
    J Phys Chem Lett; 2015 Jun; 6(11):2043-9. PubMed ID: 26266500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic enhancement spectra of one-dimensional plasmonic hotspots along silver nanowire dimer derived via surface-enhanced fluorescence.
    Itoh T; Yamamoto YS
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38189611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentric necklace nanolenses for optical near-field focusing and enhancement.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2012 May; 6(5):4341-8. PubMed ID: 22537221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.