These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 32384000)
1. Accounting for Confounding in Observational Studies. D'Onofrio BM; Sjölander A; Lahey BB; Lichtenstein P; Öberg AS Annu Rev Clin Psychol; 2020 May; 16():25-48. PubMed ID: 32384000 [TBL] [Abstract][Full Text] [Related]
2. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. Schuler MS; Rose S Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068 [TBL] [Abstract][Full Text] [Related]
3. Measured and accounted-for confounding in pharmacoepidemiologic studies: Some thoughts for practitioners. Roy J; Mitra N Pharmacoepidemiol Drug Saf; 2021 Mar; 30(3):277-282. PubMed ID: 33372303 [TBL] [Abstract][Full Text] [Related]
4. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. Desai RJ; Franklin JM BMJ; 2019 Oct; 367():l5657. PubMed ID: 31645336 [No Abstract] [Full Text] [Related]
5. Assessing causal treatment effect estimation when using large observational datasets. John ER; Abrams KR; Brightling CE; Sheehan NA BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969 [TBL] [Abstract][Full Text] [Related]
6. Observational research--opportunities and limitations. Boyko EJ J Diabetes Complications; 2013; 27(6):642-8. PubMed ID: 24055326 [TBL] [Abstract][Full Text] [Related]
7. A Future for Observational Epidemiology: Clarity, Credibility, Transparency. Harper S Am J Epidemiol; 2019 May; 188(5):840-845. PubMed ID: 30877294 [TBL] [Abstract][Full Text] [Related]
8. [Interpretation of Guidelines for controlling confounding factors and reporting results in causal inference studies]. Liu Y; Liu X; Wang Y; Wang D; Ma P Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Jan; 33(1):113-116. PubMed ID: 33565414 [TBL] [Abstract][Full Text] [Related]
9. Ten things to remember about propensity scores. Groenwold RHH; Dekkers OM; le Cessie S Eur J Endocrinol; 2024 Jul; 191(1):E1-E4. PubMed ID: 38872400 [TBL] [Abstract][Full Text] [Related]
10. Squeezing observational data for better causal inference: Methods and examples for prevention research. Garcia-Huidobro D; Michael Oakes J Int J Psychol; 2017 Apr; 52(2):96-105. PubMed ID: 27094382 [TBL] [Abstract][Full Text] [Related]
11. Testing causal effects in observational survival data using propensity score matching design. Lu B; Cai D; Tong X Stat Med; 2018 May; 37(11):1846-1858. PubMed ID: 29399833 [TBL] [Abstract][Full Text] [Related]
13. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies. Liu T; Hogan JW Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292 [TBL] [Abstract][Full Text] [Related]
14. Methods of Public Health Research - Strengthening Causal Inference from Observational Data. Hernán MA N Engl J Med; 2021 Oct; 385(15):1345-1348. PubMed ID: 34596980 [No Abstract] [Full Text] [Related]
15. Causal inference based on counterfactuals. Höfler M BMC Med Res Methodol; 2005 Sep; 5():28. PubMed ID: 16159397 [TBL] [Abstract][Full Text] [Related]
16. Propensity score methods in observational research: brief review and guide for authors. Andrew BY; Alan Brookhart M; Pearse R; Raghunathan K; Krishnamoorthy V Br J Anaesth; 2023 Nov; 131(5):805-809. PubMed ID: 37481434 [TBL] [Abstract][Full Text] [Related]
17. Observational Research Using Propensity Scores. Raghunathan K; Layton JB; Ohnuma T; Shaw AD Adv Chronic Kidney Dis; 2016 Nov; 23(6):367-372. PubMed ID: 28115080 [TBL] [Abstract][Full Text] [Related]
18. Instrumental variable methods for causal inference. Baiocchi M; Cheng J; Small DS Stat Med; 2014 Jun; 33(13):2297-340. PubMed ID: 24599889 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes. Huang R; Xu R; Dulai PS Stat Med; 2020 Oct; 39(24):3397-3411. PubMed ID: 32677758 [TBL] [Abstract][Full Text] [Related]
20. Causal Methods for Observational Research: A Primer. Almasi-Hashiani A; Nedjat S; Mansournia MA Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]