BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 32384081)

  • 1. Autonomous emergence of connectivity assemblies via spike triplet interactions.
    Montangie L; Miehl C; Gjorgjieva J
    PLoS Comput Biol; 2020 May; 16(5):e1007835. PubMed ID: 32384081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations.
    Gjorgjieva J; Clopath C; Audet J; Pfister JP
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19383-8. PubMed ID: 22080608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaping Neural Circuits by High Order Synaptic Interactions.
    Ravid Tannenbaum N; Burak Y
    PLoS Comput Biol; 2016 Aug; 12(8):e1005056. PubMed ID: 27517461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triplets of spikes in a model of spike timing-dependent plasticity.
    Pfister JP; Gerstner W
    J Neurosci; 2006 Sep; 26(38):9673-82. PubMed ID: 16988038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of connectivity motifs in networks of model neurons with short- and long-term plastic synapses.
    Vasilaki E; Giugliano M
    PLoS One; 2014; 9(1):e84626. PubMed ID: 24454735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity.
    Ocker GK; Doiron B
    Cereb Cortex; 2019 Mar; 29(3):937-951. PubMed ID: 29415191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purely STDP-based assembly dynamics: Stability, learning, overlaps, drift and aging.
    Manz P; Memmesheimer RM
    PLoS Comput Biol; 2023 Apr; 19(4):e1011006. PubMed ID: 37043481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):411-26. PubMed ID: 19937071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delay-Induced Multistability and Loop Formation in Neuronal Networks with Spike-Timing-Dependent Plasticity.
    Madadi Asl M; Valizadeh A; Tass PA
    Sci Rep; 2018 Aug; 8(1):12068. PubMed ID: 30104713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity.
    Badoual M; Zou Q; Davison AP; Rudolph M; Bal T; Frégnac Y; Destexhe A
    Int J Neural Syst; 2006 Apr; 16(2):79-97. PubMed ID: 16688849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike timing-dependent plasticity of neural circuits.
    Dan Y; Poo MM
    Neuron; 2004 Sep; 44(1):23-30. PubMed ID: 15450157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.