These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32384157)
1. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Johnson KJ; Auerbach SS; Costa E Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157 [TBL] [Abstract][Full Text] [Related]
2. Short-term toxicogenomics as an alternative approach to chronic in vivo studies for derivation of points of departure: A case study in the rat with a triazole fungicide. LaRocca J; Costa E; Sriram S; Hannas BR; Johnson KJ Regul Toxicol Pharmacol; 2020 Jun; 113():104655. PubMed ID: 32268158 [TBL] [Abstract][Full Text] [Related]
3. A rat subchronic study transcriptional point of departure estimates a carcinogenicity study apical point of departure. Bianchi E; Costa E; Yan ZJ; Murphy L; Howell J; Anderson D; Mukerji P; Venkatraman A; Terry C; Johnson KJ Food Chem Toxicol; 2021 Jan; 147():111869. PubMed ID: 33217531 [TBL] [Abstract][Full Text] [Related]
4. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model. Johnson KJ; Costa E; Marshall V; Sriram S; Venkatraman A; Stebbins K; LaRocca J Birth Defects Res; 2022 Jul; 114(11):559-576. PubMed ID: 35596682 [TBL] [Abstract][Full Text] [Related]
5. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Farmahin R; Williams A; Kuo B; Chepelev NL; Thomas RS; Barton-Maclaren TS; Curran IH; Nong A; Wade MG; Yauk CL Arch Toxicol; 2017 May; 91(5):2045-2065. PubMed ID: 27928627 [TBL] [Abstract][Full Text] [Related]
6. BMDExpress Data Viewer - a visualization tool to analyze BMDExpress datasets. Kuo B; Francina Webster A; Thomas RS; Yauk CL J Appl Toxicol; 2016 Aug; 36(8):1048-59. PubMed ID: 26671443 [TBL] [Abstract][Full Text] [Related]
7. Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD). Webster AF; Chepelev N; Gagné R; Kuo B; Recio L; Williams A; Yauk CL PLoS One; 2015; 10(8):e0136764. PubMed ID: 26313361 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic point of departure determination: a comparison of distribution-based and gene set-based approaches. Costa E; Johnson KJ; Walker CA; O'Brien JM Front Genet; 2024; 15():1374791. PubMed ID: 38784034 [TBL] [Abstract][Full Text] [Related]
9. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Moffat I; Chepelev N; Labib S; Bourdon-Lacombe J; Kuo B; Buick JK; Lemieux F; Williams A; Halappanavar S; Malik A; Luijten M; Aubrecht J; Hyduke DR; Fornace AJ; Swartz CD; Recio L; Yauk CL Crit Rev Toxicol; 2015 Jan; 45(1):1-43. PubMed ID: 25605026 [TBL] [Abstract][Full Text] [Related]
10. Hepatotoxicity of silver nanoparticles: Benchmark concentration modeling of an in vitro transcriptomics study in human iPSC-derived hepatocytes. Gao X; Johnson WE; Yourick MR; Campasino K; Sprando RL; Yourick JJ Regul Toxicol Pharmacol; 2024 Aug; 151():105653. PubMed ID: 38825064 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals. Pagé-Larivière F; Crump D; O'Brien JM Toxicol Appl Pharmacol; 2019 Sep; 378():114634. PubMed ID: 31226361 [TBL] [Abstract][Full Text] [Related]
12. Open TG-GATEs: a large-scale toxicogenomics database. Igarashi Y; Nakatsu N; Yamashita T; Ono A; Ohno Y; Urushidani T; Yamada H Nucleic Acids Res; 2015 Jan; 43(Database issue):D921-7. PubMed ID: 25313160 [TBL] [Abstract][Full Text] [Related]
13. Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment. Johnson GE; Soeteman-Hernández LG; Gollapudi BB; Bodger OG; Dearfield KL; Heflich RH; Hixon JG; Lovell DP; MacGregor JT; Pottenger LH; Thompson CM; Abraham L; Thybaud V; Tanir JY; Zeiger E; van Benthem J; White PA Environ Mol Mutagen; 2014 Oct; 55(8):609-23. PubMed ID: 24801602 [TBL] [Abstract][Full Text] [Related]
14. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane. Farmahin R; Gannon AM; Gagné R; Rowan-Carroll A; Kuo B; Williams A; Curran I; Yauk CL Food Chem Toxicol; 2019 Nov; 133():110262. PubMed ID: 30594549 [TBL] [Abstract][Full Text] [Related]
15. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules. Te JA; AbdulHameed MD; Wallqvist A J Appl Toxicol; 2016 Sep; 36(9):1137-49. PubMed ID: 26725466 [TBL] [Abstract][Full Text] [Related]
16. Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets. Burgoon LD; Zacharewski TR Toxicol Sci; 2008 Aug; 104(2):412-8. PubMed ID: 18441342 [TBL] [Abstract][Full Text] [Related]
17. Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Thomas RS; Wesselkamper SC; Wang NC; Zhao QJ; Petersen DD; Lambert JC; Cote I; Yang L; Healy E; Black MB; Clewell HJ; Allen BC; Andersen ME Toxicol Sci; 2013 Jul; 134(1):180-94. PubMed ID: 23596260 [TBL] [Abstract][Full Text] [Related]
18. Toxicogenomics and cancer risk assessment: a framework for key event analysis and dose-response assessment for nongenotoxic carcinogens. Bercu JP; Jolly RA; Flagella KM; Baker TK; Romero P; Stevens JL Regul Toxicol Pharmacol; 2010 Dec; 58(3):369-81. PubMed ID: 20801182 [TBL] [Abstract][Full Text] [Related]
19. An evaluation of benchmark dose methodology for non-cancer continuous-data health effects in animals due to exposures to dioxin (TCDD). Gaylor DW; Aylward LL Regul Toxicol Pharmacol; 2004 Aug; 40(1):9-17. PubMed ID: 15265602 [TBL] [Abstract][Full Text] [Related]
20. Editor's Highlight: Comparative Dose-Response Analysis of Liver and Kidney Transcriptomic Effects of Trichloroethylene and Tetrachloroethylene in B6C3F1 Mouse. Zhou YH; Cichocki JA; Soldatow VY; Scholl EH; Gallins PJ; Jima D; Yoo HS; Chiu WA; Wright FA; Rusyn I Toxicol Sci; 2017 Nov; 160(1):95-110. PubMed ID: 28973375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]