These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32384244)
1. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. Mlýnský V; Kührová P; Kühr T; Otyepka M; Bussi G; Banáš P; Šponer J J Chem Theory Comput; 2020 Jun; 16(6):3936-3946. PubMed ID: 32384244 [TBL] [Abstract][Full Text] [Related]
2. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. Kührová P; Mlýnský V; Zgarbová M; Krepl M; Bussi G; Best RB; Otyepka M; Šponer J; Banáš P J Chem Theory Comput; 2019 May; 15(5):3288-3305. PubMed ID: 30896943 [TBL] [Abstract][Full Text] [Related]
3. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. Mlýnský V; Janeček M; Kührová P; Fröhlking T; Otyepka M; Bussi G; Banáš P; Šponer J J Chem Theory Comput; 2022 Apr; 18(4):2642-2656. PubMed ID: 35363478 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Ditzler MA; Otyepka M; Sponer J; Walter NG Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142 [TBL] [Abstract][Full Text] [Related]
5. Base-specific RNA force field improving the dynamics conformation of nucleotide. Li Z; Mu J; Chen J; Chen HF Int J Biol Macromol; 2022 Dec; 222(Pt A):680-690. PubMed ID: 36167105 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Current State of Amber Force Field Modifications for DNA. Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587 [TBL] [Abstract][Full Text] [Related]
7. Adjusting the Energy Profile for CH-O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations. Raguette LE; Gunasekera SS; Diaz Ventura RI; Aminov E; Linzer JT; Parwana D; Wu Q; Simmerling C; Nagan MC J Phys Chem B; 2024 Aug; 128(33):7921-7933. PubMed ID: 39110091 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions. Ricci CG; de Andrade AS; Mottin M; Netz PA J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923 [TBL] [Abstract][Full Text] [Related]
9. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853 [TBL] [Abstract][Full Text] [Related]
10. Empirical Corrections to the Amber RNA Force Field with Target Metadynamics. Gil-Ley A; Bottaro S; Bussi G J Chem Theory Comput; 2016 Jun; 12(6):2790-8. PubMed ID: 27153317 [TBL] [Abstract][Full Text] [Related]
11. Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations. Mlýnský V; Kührová P; Stadlbauer P; Krepl M; Otyepka M; Banáš P; Šponer J J Chem Theory Comput; 2023 Nov; 19(22):8423-8433. PubMed ID: 37944118 [TBL] [Abstract][Full Text] [Related]
12. Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields. Nganou C; Kennedy SD; McCamant DW J Phys Chem B; 2016 Feb; 120(7):1250-8. PubMed ID: 26836489 [TBL] [Abstract][Full Text] [Related]
13. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. Bergonzo C; Henriksen NM; Roe DR; Cheatham TE RNA; 2015 Sep; 21(9):1578-90. PubMed ID: 26124199 [TBL] [Abstract][Full Text] [Related]
14. RNA force field with accuracy comparable to state-of-the-art protein force fields. Tan D; Piana S; Dirks RM; Shaw DE Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1346-E1355. PubMed ID: 29378935 [TBL] [Abstract][Full Text] [Related]
15. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? Šponer J; Krepl M; Banáš P; Kührová P; Zgarbová M; Jurečka P; Havrila M; Otyepka M Wiley Interdiscip Rev RNA; 2017 May; 8(3):. PubMed ID: 27863061 [TBL] [Abstract][Full Text] [Related]
16. Nuclear Magnetic Resonance Spectra and AMBER OL3 and ROC-RNA Simulations of UCUCGU Reveal Force Field Strengths and Weaknesses for Single-Stranded RNA. Zhao J; Kennedy SD; Turner DH J Chem Theory Comput; 2022 Feb; 18(2):1241-1254. PubMed ID: 34990548 [TBL] [Abstract][Full Text] [Related]
17. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations. Watts CR; Gregory A; Frisbie C; Lovas S Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155 [TBL] [Abstract][Full Text] [Related]
18. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. Mráziková K; Mlýnský V; Kührová P; Pokorná P; Kruse H; Krepl M; Otyepka M; Banáš P; Šponer J J Chem Theory Comput; 2020 Dec; 16(12):7601-7617. PubMed ID: 33215915 [TBL] [Abstract][Full Text] [Related]
19. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there? Dauber-Osguthorpe P; Hagler AT J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158 [TBL] [Abstract][Full Text] [Related]
20. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field. Wales DJ; Yildirim I J Phys Chem B; 2017 Apr; 121(14):2989-2999. PubMed ID: 28319659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]