BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 32384592)

  • 1. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid extraction of valuable metals from spent LiNi
    Zhang J; Hu X; He T; Yuan X; Li X; Shi H; Yang L; Shao P; Wang C; Luo X
    Waste Manag; 2023 Jun; 165():19-26. PubMed ID: 37075685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries.
    Pant D; Dolker T
    Waste Manag; 2017 Feb; 60():689-695. PubMed ID: 27697424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water.
    Nshizirungu T; Agarwal A; Jo YT; Rana M; Shin D; Park JH
    J Hazard Mater; 2020 Jul; 393():122367. PubMed ID: 32114140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.
    Nayaka GP; Pai KV; Manjanna J; Keny SJ
    Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency selective leaching of valuable metals from spent lithium-ion batteries: Effects of Na
    Hu Q; Luo Z; Zhou H; Cao Z
    Waste Manag; 2023 Jul; 167():204-212. PubMed ID: 37269584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride.
    Nshizirungu T; Rana M; Jo YT; Park JH
    J Hazard Mater; 2020 Sep; 396():122667. PubMed ID: 32361298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.