These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32384605)

  • 1. A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision.
    Morar A; Moldoveanu A; Mocanu I; Moldoveanu F; Radoi IE; Asavei V; Gradinaru A; Butean A
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Indoor Positioning System Based on Static Objects in Large Indoor Scenes by Using Smartphone Cameras.
    Xiao A; Chen R; Li D; Chen Y; Wu D
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29997340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments.
    Kunhoth J; Karkar A; Al-Maadeed S; Al-Attiyah A
    Int J Health Geogr; 2019 Dec; 18(1):29. PubMed ID: 31829212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Survey of Marker-Less Tracking and Registration Techniques for Health & Environmental Applications to Augmented Reality and Ubiquitous Geospatial Information Systems.
    Sadeghi-Niaraki A; Choi SM
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile-Based 3D Modeling: An In-Depth Evaluation for the Application in Indoor Scenarios.
    De Pellegrini M; Orlandi L; Sevegnani D; Conci N
    J Imaging; 2021 Aug; 7(9):. PubMed ID: 34460803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Visual and VAE Based Hierarchical Indoor Localization Method.
    Jiang J; Zou Y; Chen L; Fang Y
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.
    Gerstweiler G; Vonach E; Kaufmann H
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor Localization for Visually Impaired Travelers Using Computer Vision on a Smartphone.
    Fusco G; Coughlan JM
    Proc 17th Int Web All Conf (2020); 2020 Apr; 2020():. PubMed ID: 33163996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mobile Robot Localization via Indoor Fixed Remote Surveillance Cameras.
    Shim JH; Cho YI
    Sensors (Basel); 2016 Feb; 16(2):195. PubMed ID: 26861325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobile augmented reality based indoor map for improving geo-visualization.
    Ma W; Zhang S; Huang J
    PeerJ Comput Sci; 2021; 7():e704. PubMed ID: 34604526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision-Based Automated Recognition and 3D Localization Framework for Tower Cranes Using Far-Field Cameras.
    Wang J; Zhang Q; Yang B; Zhang B
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UNav: An Infrastructure-Independent Vision-Based Navigation System for People with Blindness and Low Vision.
    Yang A; Beheshti M; Hudson TE; Vedanthan R; Riewpaiboon W; Mongkolwat P; Feng C; Rizzo JR
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image and video processing on mobile devices: a survey.
    Morikawa C; Kobayashi M; Satoh M; Kuroda Y; Inomata T; Matsuo H; Miura T; Hilaga M
    Vis Comput; 2021; 37(12):2931-2949. PubMed ID: 34177023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Computer Vision and Wireless Networks to Provide Indoor Positioning.
    Duque Domingo J; Gómez-García-Bermejo J; Zalama E; Cerrada C; Valero E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scene Recognition for Indoor Localization Using a Multi-Sensor Fusion Approach.
    Liu M; Chen R; Li D; Chen Y; Guo G; Cao Z; Pan Y
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Floor Indoor Localization Based on Multi-Modal Sensors.
    Zhou G; Xu S; Zhang S; Wang Y; Xiang C
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies.
    Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Model to Support Fluid Transitions between Environments for Mobile Augmented Reality Applications.
    Oliveira de Araújo TD; Resque Dos Santos CG; do Amor Divino Lima RS; Serique Meiguins B
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31575016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Indoor Location-Based Augmented Reality Framework.
    Jiang JR; Subakti H
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.