These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32384809)

  • 1. Cracking Behavior of René 104 Nickel-Based Superalloy Prepared by Selective Laser Melting Using Different Scanning Strategies.
    Peng K; Duan R; Liu Z; Lv X; Li Q; Zhao F; Wei B; Nong B; Wei S
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Laser Powder Bed Fusion Process Parameters on Voids, Cracks, and Microhardness of Nickel-Based Superalloy Alloy 247LC.
    Adegoke O; Andersson J; Brodin H; Pederson R
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169.
    Zhao Z; Li L; Tan L; Bai P; Li J; Wu L; Liao H; Cheng Y
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30149554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale.
    Cao L; Yuan X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
    Qian D; Xue J; Zhang A; Li Y; Tamura N; Song Z; Chen K
    Sci Rep; 2017 Jun; 7(1):2859. PubMed ID: 28588298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting.
    Koutny D; Palousek D; Pantelejev L; Hoeller C; Pichler R; Tesicky L; Kaiser J
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29443912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of Solidified Phases on the Hot Cracking of a Large-Size GH4742 Superalloy Ingot.
    Zhang L; Wang L; Liu Y; Song X; Yu T; Duan R
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology.
    Liu X; Wang K; Hu P; He X; Yan B; Zhao X
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33669893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crack Inhibition and Performance Modification of NiCoCr-Based Superalloy with Y
    Li X; Du J; Xu J; Wang S; Shen M; Jiang C
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Laser Rescanning on the Characteristics and Residual Stress of Selective Laser Melted Titanium Ti6Al4V Alloy.
    Miao X; Wu M; Han J; Li H; Ye X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Scanning Strategy on the Thermal Behavior and Residual Stress Distribution of Damping Alloys during Selective Laser Melting.
    Yan Z; Wu K; Xiao Z; Hui J; Lv J
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrastive Studies between Laser Repairing and Plasma Arc Repairing on Single-Crystal Ni-Based Superalloy.
    Wang C; Li Q; Zhou X; Zhu W; Huang R; Pan Z; Chen K; He C
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Selective Laser Melting Additive Manufacturing Parameters in Inconel 718 Superalloy.
    Kladovasilakis N; Charalampous P; Tsongas K; Kostavelis I; Tzovaras D; Tzetzis D
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of a Scanning Strategy on the Residual Stress of 316L Steel Parts Fabricated by Selective Laser Melting (SLM).
    Wang D; Wu S; Yang Y; Dou W; Deng S; Wang Z; Li S
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machinability of Rene 65 Superalloy.
    Olufayo OA; Che H; Songmene V; Katsari C; Yue S
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31242585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of Crack-Free Nickel-Based Superalloy Considered Non-Weldable during Laser Powder Bed Fusion.
    Sanchez-Mata O; Wang X; Muñiz-Lerma JA; Attarian Shandiz M; Gauvin R; Brochu M
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30046019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy.
    Hirsch M; Catchpole-Smith S; Patel R; Marrow P; Li W; Tuck C; Sharples SD; Clare AT
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170194. PubMed ID: 28989306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Preheating on the Microstructure Evolution of Laser Re-Melting Thermal Barrier Coatings/Ni-Based Single Crystal Superalloy Multilayer System.
    Fan Z; Duan W; Zhang X; Mei X; Wang W; Cui J
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yttrium's Effect on the Hot Cracking and Creep Properties of a Ni-Based Superalloy Built Up by Additive Manufacturing.
    Banoth S; Palleda TN; Shimazu S; Kakehi K
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.