These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32384838)
1. Persistence in Brownian motion of an ellipsoidal particle in two dimensions. Ghosh A; Chakraborty D J Chem Phys; 2020 May; 152(17):174901. PubMed ID: 32384838 [TBL] [Abstract][Full Text] [Related]
2. Persistence of an active asymmetric rigid Brownian particle in two dimensions. Ghosh A; Mandal S; Chakraborty D J Chem Phys; 2022 Nov; 157(19):194905. PubMed ID: 36414451 [TBL] [Abstract][Full Text] [Related]
3. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
4. Entropy production of a Brownian ellipsoid in the overdamped limit. Marino R; Eichhorn R; Aurell E Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049 [TBL] [Abstract][Full Text] [Related]
5. Brownian motion of an asymmetrical particle in a potential field. Grima R; Yaliraki SN J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273 [TBL] [Abstract][Full Text] [Related]
6. Detection of diffusion anisotropy due to particle asymmetry from single-particle tracking of Brownian motion by the large-deviation principle. Hanasaki I; Isono Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051134. PubMed ID: 23004730 [TBL] [Abstract][Full Text] [Related]
7. Persistence of a Brownian particle in a time-dependent potential. Chakraborty D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051101. PubMed ID: 23004697 [TBL] [Abstract][Full Text] [Related]
8. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603 [TBL] [Abstract][Full Text] [Related]
9. Persistent motion of a Brownian particle subject to repulsive feedback with time delay. Kopp RA; Klapp SHL Phys Rev E; 2023 Feb; 107(2-1):024611. PubMed ID: 36932532 [TBL] [Abstract][Full Text] [Related]
10. Brownian motion of a particle with arbitrary shape. Cichocki B; Ekiel-Jeżewska ML; Wajnryb E J Chem Phys; 2015 Jun; 142(21):214902. PubMed ID: 26049519 [TBL] [Abstract][Full Text] [Related]
11. Brownian motion of an ellipsoid. Han Y; Alsayed AM; Nobili M; Zhang J; Lubensky TC; Yodh AG Science; 2006 Oct; 314(5799):626-30. PubMed ID: 17068256 [TBL] [Abstract][Full Text] [Related]
12. Brownian motion of arbitrarily shaped particles in two dimensions. Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH Langmuir; 2014 Nov; 30(46):13844-53. PubMed ID: 25357180 [TBL] [Abstract][Full Text] [Related]
13. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid. Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of a trapped Brownian particle in shear flows. Holzer L; Bammert J; Rzehak R; Zimmermann W Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041124. PubMed ID: 20481694 [TBL] [Abstract][Full Text] [Related]
15. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Malakar K; Das A; Kundu A; Kumar KV; Dhar A Phys Rev E; 2020 Feb; 101(2-1):022610. PubMed ID: 32168649 [TBL] [Abstract][Full Text] [Related]
16. Generalized persistence dynamics for active motion. Sevilla FJ; Castro-Villarreal P Phys Rev E; 2021 Dec; 104(6-1):064601. PubMed ID: 35030873 [TBL] [Abstract][Full Text] [Related]
17. Stochastic thermodynamics of a harmonically trapped colloid in linear mixed flow. Pagare A; Cherayil BJ Phys Rev E; 2019 Nov; 100(5-1):052124. PubMed ID: 31869946 [TBL] [Abstract][Full Text] [Related]
18. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles. Chakrabarty A; Wang F; Sun K; Wei QH Soft Matter; 2016 May; 12(19):4318-23. PubMed ID: 27079870 [TBL] [Abstract][Full Text] [Related]
19. Brownian motion of ellipsoidal particles on a granular magnetic bath. Tapia-Ignacio C; Moctezuma RE; Donado F; Weeks ER Phys Rev E; 2020 Aug; 102(2-1):022902. PubMed ID: 32942353 [TBL] [Abstract][Full Text] [Related]
20. Diffusion of particles moving with constant speed. Ramakrishna SA; Kumar N Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):1381-9. PubMed ID: 11969898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]