These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Designed and fabrication of triple-layered vascular scaffold with microchannels. Hu Q; Shen Z; Zhang H; Liu S; Feng R; Feng J; Ramalingam M J Biomater Sci Polym Ed; 2021 Apr; 32(6):714-734. PubMed ID: 33332231 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Wu T; Zhang J; Wang Y; Li D; Sun B; El-Hamshary H; Yin M; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():121-129. PubMed ID: 29025640 [TBL] [Abstract][Full Text] [Related]
4. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. Deepthi S; Nivedhitha Sundaram M; Vijayan P; Nair SV; Jayakumar R Int J Biol Macromol; 2018 Apr; 109():85-98. PubMed ID: 29247731 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mi HY; Jiang Y; Jing X; Enriquez E; Li H; Li Q; Turng LS Mater Sci Eng C Mater Biol Appl; 2019 May; 98():241-249. PubMed ID: 30813024 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Wang W; Nie W; Zhou X; Feng W; Chen L; Zhang Q; You Z; Shi Q; Peng C; He C Acta Biomater; 2018 Oct; 79():168-181. PubMed ID: 30121374 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Optimization of a Biomimetic Triple-Layered Vascular Scaffold Based on Coaxial Electrospinning. Hu Q; Wu C; Zhang H Appl Biochem Biotechnol; 2020 Mar; 190(3):1106-1123. PubMed ID: 31705366 [TBL] [Abstract][Full Text] [Related]
8. High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering. Liu S; Sun L; Zhang H; Hu Q; Wang Y; Ramalingam M Int J Biol Macromol; 2021 Jan; 166():1280-1291. PubMed ID: 33159941 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and modification of wavy multicomponent vascular grafts with biomimetic mechanical properties, antithrombogenicity, and enhanced endothelial cell affinity. Mi HY; Jing X; Li ZT; Lin YJ; Thomson JA; Turng LS J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2397-2408. PubMed ID: 30689292 [TBL] [Abstract][Full Text] [Related]
10. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. Montini-Ballarin F; Calvo D; Caracciolo PC; Rojo F; Frontini PM; Abraham GA; V Guinea G J Mech Behav Biomed Mater; 2016 Jul; 60():220-233. PubMed ID: 26872337 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic coating of cross-linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Pezzoli D; Cauli E; Chevallier P; Farè S; Mantovani D J Biomed Mater Res A; 2017 Sep; 105(9):2405-2415. PubMed ID: 28467013 [TBL] [Abstract][Full Text] [Related]
12. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Lu X; Zou H; Liao X; Xiong Y; Hu X; Cao J; Pan J; Li C; Zheng Y Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36374009 [TBL] [Abstract][Full Text] [Related]
13. Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. Chew CH; Sheu BL; Chen A; Huang WT; Cheng TM; Shih CM; Chang A; Chen CC Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677499 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a Triple-Layer Bionic Vascular Scaffold via Hybrid Electrospinning. Ma F; Huang X; Wang Y J Funct Biomater; 2024 May; 15(6):. PubMed ID: 38921514 [TBL] [Abstract][Full Text] [Related]
15. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L; Wu Y; Hu T; Ma PX; Guo B Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823 [TBL] [Abstract][Full Text] [Related]
16. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. Ye L; Cao J; Chen L; Geng X; Zhang AY; Guo LR; Gu YQ; Feng ZG J Biomed Mater Res A; 2015 Dec; 103(12):3863-71. PubMed ID: 26123627 [TBL] [Abstract][Full Text] [Related]
17. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining. Davoudi P; Assadpour S; Derakhshan MA; Ai J; Solouk A; Ghanbari H Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():213-221. PubMed ID: 28866159 [TBL] [Abstract][Full Text] [Related]
19. In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers. Haghjooy Javanmard S; Anari J; Zargar Kharazi A; Vatankhah E J Biomater Appl; 2016 Sep; 31(3):438-49. PubMed ID: 27247131 [TBL] [Abstract][Full Text] [Related]
20. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Jia W; Li M; Weng H; Gu G; Chen Z Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110717. PubMed ID: 32204029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]