These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32385262)

  • 1. Deciphering exciton-generation processes in quantum-dot electroluminescence.
    Deng Y; Lin X; Fang W; Di D; Wang L; Friend RH; Peng X; Jin Y
    Nat Commun; 2020 May; 11(1):2309. PubMed ID: 32385262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
    Makarov NS; Guo S; Isaienko O; Liu W; Robel I; Klimov VI
    Nano Lett; 2016 Apr; 16(4):2349-62. PubMed ID: 26882294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots.
    Pu C; Dai X; Shu Y; Zhu M; Deng Y; Jin Y; Peng X
    Nat Commun; 2020 Feb; 11(1):937. PubMed ID: 32071297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Dynamics of Charges and Excitons in Quantum Dot Light-Emitting Diodes.
    Kim J; Hahm D; Bae WK; Lee H; Kwak J
    Small; 2022 Jul; 18(29):e2202290. PubMed ID: 35754301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.
    Sun L; Choi JJ; Stachnik D; Bartnik AC; Hyun BR; Malliaras GG; Hanrath T; Wise FW
    Nat Nanotechnol; 2012 May; 7(6):369-73. PubMed ID: 22562037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressing Auger Recombination in Cesium Lead Bromide Perovskite Nanocrystal Film for Bright Light-Emitting Diodes.
    Yao JS; Zhang JC; Wang L; Wang KH; Ru XC; Yang JN; Wang JJ; Chen X; Song YH; Yin YC; Lan YF; Zhang Q; Yao HB
    J Phys Chem Lett; 2020 Nov; 11(21):9371-9378. PubMed ID: 33095581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation.
    He S; Tang X; Deng Y; Yin N; Jin W; Lu X; Chen D; Wang C; Sun T; Chen Q; Jin Y
    Nat Commun; 2023 Nov; 14(1):7785. PubMed ID: 38012136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charging and Charged Species in Quantum Dot Light-Emitting Diodes.
    Keating LP; Lee H; Rogers SP; Huang C; Shim M
    Nano Lett; 2022 Dec; 22(23):9500-9506. PubMed ID: 36459088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically Confined Electroluminescence of Neutral Excitons in WSe
    Shin JC; Jeong JH; Kwon J; Kim YH; Kim B; Woo SJ; Woo KY; Cho M; Watanabe K; Taniguchi T; Kim YD; Cho YH; Lee TW; Hone J; Lee CH; Lee GH
    Adv Mater; 2024 Apr; 36(14):e2310498. PubMed ID: 38169481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices.
    Bae WK; Lim J; Lee D; Park M; Lee H; Kwak J; Char K; Lee C; Lee S
    Adv Mater; 2014 Oct; 26(37):6387-93. PubMed ID: 25155181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.
    Kim YH; Wolf C; Kim YT; Cho H; Kwon W; Do S; Sadhanala A; Park CG; Rhee SW; Im SH; Friend RH; Lee TW
    ACS Nano; 2017 Jul; 11(7):6586-6593. PubMed ID: 28587467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.
    Tilchin J; Rabouw FT; Isarov M; Vaxenburg R; Van Dijk-Moes RJ; Lifshitz E; Vanmaekelbergh D
    ACS Nano; 2015 Aug; 9(8):7840-5. PubMed ID: 26181051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots.
    Zhang Z; Ye Y; Pu C; Deng Y; Dai X; Chen X; Chen D; Zheng X; Gao Y; Fang W; Peng X; Jin Y
    Adv Mater; 2018 Jul; 30(28):e1801387. PubMed ID: 29808563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the electroluminescence overshoot of quantum-dot light-emitting diodes.
    Yu R; Yin F; Pu C; Zhou D; Ji W
    Opt Lett; 2023 Jun; 48(11):3059-3062. PubMed ID: 37262280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters.
    Mutlugun E; Guzelturk B; Abiyasa AP; Gao Y; Sun XW; Demir HV
    J Phys Chem Lett; 2014 Aug; 5(16):2802-7. PubMed ID: 26278082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices.
    Lee H; Jeong BG; Bae WK; Lee DC; Lim J
    Nat Commun; 2021 Sep; 12(1):5669. PubMed ID: 34580301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectra Stable Quantum Dots Enabled by Band Engineering for Boosting Electroluminescence in Devices.
    Lyu B; Hu J; Chen Y; Ma Z
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes.
    Su Q; Chen S
    Nat Commun; 2022 Jan; 13(1):369. PubMed ID: 35042857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.