These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32385372)
21. Phosphodiesterase Inhibitors Revert Axonal Dystrophy in Friedreich's Ataxia Mouse Model. Mollá B; Muñoz-Lasso DC; Calap P; Fernandez-Vilata A; de la Iglesia-Vaya M; Pallardó FV; Moltó MD; Palau F; Gonzalez-Cabo P Neurotherapeutics; 2019 Apr; 16(2):432-449. PubMed ID: 30761510 [TBL] [Abstract][Full Text] [Related]
22. Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming. Polak U; Li Y; Butler JS; Napierala M Stem Cells Dev; 2016 Dec; 25(23):1788-1800. PubMed ID: 27615158 [TBL] [Abstract][Full Text] [Related]
23. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Codazzi F; Hu A; Rai M; Donatello S; Salerno Scarzella F; Mangiameli E; Pelizzoni I; Grohovaz F; Pandolfo M Hum Mol Genet; 2016 Nov; 25(22):4847-4855. PubMed ID: 28175303 [TBL] [Abstract][Full Text] [Related]
24. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Maheshwari S; Vilema-Enríquez G; Wade-Martins R Transl Neurodegener; 2023 Sep; 12(1):45. PubMed ID: 37726850 [TBL] [Abstract][Full Text] [Related]
25. Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases-Friedreich's Ataxia Example. Li Y; Polak U; Clark AD; Bhalla AD; Chen YY; Li J; Farmer J; Seyer L; Lynch D; Butler JS; Napierala M Biopreserv Biobank; 2016 Aug; 14(4):324-9. PubMed ID: 27002638 [TBL] [Abstract][Full Text] [Related]
26. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Guo R; Chen Y; Zhang J; Zhou Z; Feng B; Du X; Liu X; Ma J; Cui H Mol Neurobiol; 2024 Jul; 61(7):4732-4749. PubMed ID: 38127186 [TBL] [Abstract][Full Text] [Related]
27. Progress in understanding Friedreich's ataxia using human induced pluripotent stem cells. Schreiber AM; Misiorek JO; Napierala JS; Napierala M Expert Opin Orphan Drugs; 2019; 7(2):81-90. PubMed ID: 30828501 [TBL] [Abstract][Full Text] [Related]
28. Human Induced Pluripotent Cell-Derived Sensory Neurons for Fate Commitment of Bone Marrow-Derived Schwann Cells: Implications for Remyelination Therapy. Cai S; Han L; Ao Q; Chan YS; Shum DK Stem Cells Transl Med; 2017 Feb; 6(2):369-381. PubMed ID: 28191772 [TBL] [Abstract][Full Text] [Related]
29. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Gupta S; Sivalingam D; Hain S; Makkar C; Sosa E; Clark A; Butler SJ Stem Cell Reports; 2018 Feb; 10(2):390-405. PubMed ID: 29337120 [TBL] [Abstract][Full Text] [Related]
30. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Leng L; Tan Y; Gong F; Hu L; Ouyang Q; Zhao Y; Lu G; Lin G Hum Reprod; 2015 Mar; 30(3):737-48. PubMed ID: 25586786 [TBL] [Abstract][Full Text] [Related]
32. Generation of Cortical, Dopaminergic, Motor, and Sensory Neurons from Human Pluripotent Stem Cells. Tay SH; Winanto ; Khong ZJ; Koh YH; Ng SY Methods Mol Biol; 2022; 2549():359-377. PubMed ID: 33959917 [TBL] [Abstract][Full Text] [Related]
33. Autologous stem cell transplant with gene therapy for Friedreich ataxia. Tajiri N; Staples M; Kaneko Y; Kim SU; Zesiewicz TA; Borlongan CV Med Hypotheses; 2014 Sep; 83(3):296-8. PubMed ID: 24962209 [TBL] [Abstract][Full Text] [Related]
34. Established Stem Cell Model of Spinal Muscular Atrophy Is Applicable in the Evaluation of the Efficacy of Thyrotropin-Releasing Hormone Analog. Ohuchi K; Funato M; Kato Z; Seki J; Kawase C; Tamai Y; Ono Y; Nagahara Y; Noda Y; Kameyama T; Ando S; Tsuruma K; Shimazawa M; Hara H; Kaneko H Stem Cells Transl Med; 2016 Feb; 5(2):152-63. PubMed ID: 26683872 [TBL] [Abstract][Full Text] [Related]
35. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Rocca CJ; Goodman SM; Dulin JN; Haquang JH; Gertsman I; Blondelle J; Smith JLM; Heyser CJ; Cherqui S Sci Transl Med; 2017 Oct; 9(413):. PubMed ID: 29070698 [TBL] [Abstract][Full Text] [Related]
36. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Yuan T; Liao W; Feng NH; Lou YL; Niu X; Zhang AJ; Wang Y; Deng ZF Stem Cell Res Ther; 2013 Jun; 4(3):73. PubMed ID: 23769173 [TBL] [Abstract][Full Text] [Related]
37. Human Pluripotent Stem Cells as In Vitro Models of Neurodegenerative Diseases. Machairaki V Adv Exp Med Biol; 2020; 1195():93-94. PubMed ID: 32468463 [TBL] [Abstract][Full Text] [Related]
38. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Li J; Rozwadowska N; Clark A; Fil D; Napierala JS; Napierala M Stem Cell Res; 2019 Oct; 40():101529. PubMed ID: 31446150 [TBL] [Abstract][Full Text] [Related]
39. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. Bird MJ; Needham K; Frazier AE; van Rooijen J; Leung J; Hough S; Denham M; Thornton ME; Parish CL; Nayagam BA; Pera M; Thorburn DR; Thompson LH; Dottori M PLoS One; 2014; 9(7):e101718. PubMed ID: 25000412 [TBL] [Abstract][Full Text] [Related]