These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 323858)
1. Hydrogen-bonded protons in the tertiary structure of yeast tRNAPhe in solution. Römer R; Varadi V Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1561-4. PubMed ID: 323858 [TBL] [Abstract][Full Text] [Related]
2. A study of secondary and tertiary solution structure of yeast tRNA(Asp) by nuclear magnetic resonance. Assignment of G.U ring NH and hydrogen-bonded base pair proton resonances. Robillard GT; Hilbers CW; Reid BR; Gangloff J; Dirheimer G; Shulman RG Biochemistry; 1976 May; 15(9):1883-8. PubMed ID: 773428 [TBL] [Abstract][Full Text] [Related]
3. Identification of tertiary base pair resonances in the nuclear magnetic resonance spectra of transfer ribonucleic acid. Reid BR; McCollum L; Ribeiro NS; Abbate J; Hurd RE Biochemistry; 1979 Sep; 18(18):3996-4005. PubMed ID: 385039 [TBL] [Abstract][Full Text] [Related]
4. 1H NMR studies of transfer RNA III: the observed and the computed spectra of the hydrogen-bonded NH resonances of baker's yeast transfer-RNA Phe. Kan LS; Ts'o PO Nucleic Acids Res; 1977; 4(5):1633-47. PubMed ID: 896471 [TBL] [Abstract][Full Text] [Related]
5. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269 [TBL] [Abstract][Full Text] [Related]
6. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy. Salemink PJ; Swarthof T; Hilbers CW Biochemistry; 1979 Aug; 18(16):3477-85. PubMed ID: 383144 [TBL] [Abstract][Full Text] [Related]
7. A nuclear magnetic resonance study of secondary and tertiary structure in yeast tRNAPhe. Robillard GT; Tarr CE; Vosman F; Reid BR Biochemistry; 1977 Nov; 16(24):5261-73. PubMed ID: 336084 [TBL] [Abstract][Full Text] [Related]
8. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
9. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe. Johnston PD; Redfield AG Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239 [TBL] [Abstract][Full Text] [Related]
10. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives. Daniel WE; Cohn M Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808 [TBL] [Abstract][Full Text] [Related]
11. Quantitative determination of the number of secondary and tertiary structure base pairs in transfer RNA in solution. Bolton PH; Jones CR; Bastedo-Lerner D; Wong KL; Kearns DR Biochemistry; 1976 Oct; 15(20):4370-7. PubMed ID: 788776 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the structure of yeast tRNAphe by nuclear magnetic resonance: paramagnetic rare earth ion probes of structure. Jones CR; Kearns DR Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4237-40. PubMed ID: 4610573 [TBL] [Abstract][Full Text] [Related]
13. Nuclear Overhauser effect in specifically deuterated macromolecules: NMR assay for unusual base pairing in transfer RNA. Sánchez V; Redfield AG; Johnston PD; Tropp J Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5659-62. PubMed ID: 7003592 [TBL] [Abstract][Full Text] [Related]
14. Tertiary hydrogen bonds in the solution structure of transfer RNA. Reid BR; Ribeiro NS; Gould G; Robillard G; Hilbers CW; Shulman RG Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2049-53. PubMed ID: 1094451 [TBL] [Abstract][Full Text] [Related]
15. Proton nuclear magnetic resonance study of the effect of pH on tRNA structure. Steinmetz-Kayne M; Benigno R; Kallenbach NR Biochemistry; 1977 May; 16(10):1064-73. PubMed ID: 16638 [TBL] [Abstract][Full Text] [Related]
16. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen bond indices and tertiary structure of yeast tRNAPhe. de Giambiagi MS; Giambiagi M; Esquivel DM Z Naturforsch C Biosci; 1983; 38(7-8):621-30. PubMed ID: 6356669 [TBL] [Abstract][Full Text] [Related]
18. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related]
20. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance. Jones CR; Kearns DR Biochemistry; 1975 Jun; 14(12):2660-5. PubMed ID: 1096934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]