These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Model-Based Step Length Estimation Using a Pendant-Integrated Mobility Sensor. Lueken M; Loeser J; Weber N; Bollheimer C; Leonhardt S; Ngo C IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2655-2665. PubMed ID: 34874862 [TBL] [Abstract][Full Text] [Related]
6. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy. Ledoux ED IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444 [TBL] [Abstract][Full Text] [Related]
7. Measurement of foot placement and its variability with inertial sensors. Rebula JR; Ojeda LV; Adamczyk PG; Kuo AD Gait Posture; 2013 Sep; 38(4):974-80. PubMed ID: 23810335 [TBL] [Abstract][Full Text] [Related]
8. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals. Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820 [TBL] [Abstract][Full Text] [Related]
9. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds. Huang C; Zhang F; Xu Z; Wei J Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214579 [TBL] [Abstract][Full Text] [Related]
10. On the choice of multiscale entropy algorithm for quantification of complexity in gait data. Raffalt PC; Denton W; Yentes JM Comput Biol Med; 2018 Dec; 103():93-100. PubMed ID: 30343216 [TBL] [Abstract][Full Text] [Related]
11. Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders. Wang Q; Ye L; Luo H; Men A; Zhao F; Huang Y Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781668 [TBL] [Abstract][Full Text] [Related]
12. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life. Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278 [TBL] [Abstract][Full Text] [Related]
13. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals. Ensink C; Smulders K; Warnar J; Keijsers N PeerJ; 2023; 11():e16641. PubMed ID: 38111664 [TBL] [Abstract][Full Text] [Related]
14. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor. Song M; Kim J IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542 [TBL] [Abstract][Full Text] [Related]
15. Quantifying Asymmetric Gait Pattern Changes Using a Hidden Markov Model Similarity Measure (HMM-SM) on Inertial Sensor Signals. Ng G; Gouda A; Andrysek J Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409470 [TBL] [Abstract][Full Text] [Related]
16. Mobile inertial sensor based gait analysis: Validity and reliability of spatiotemporal gait characteristics in healthy seniors. Donath L; Faude O; Lichtenstein E; Pagenstert G; Nüesch C; Mündermann A Gait Posture; 2016 Sep; 49():371-374. PubMed ID: 27494305 [TBL] [Abstract][Full Text] [Related]
17. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects. Scalera GM; Ferrarin M; Rabuffetti M J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581 [TBL] [Abstract][Full Text] [Related]
18. Maximum Lyapunov exponent revisited: Long-term attractor divergence of gait dynamics is highly sensitive to the noise structure of stride intervals. Terrier P; Reynard F Gait Posture; 2018 Oct; 66():236-241. PubMed ID: 30212783 [TBL] [Abstract][Full Text] [Related]
19. A method for calculating fall risk parameters from discrete stride time series regardless of sensor placement. Abiad NA; Houdry E; El Khoury C; Renaudin V; Robert T Gait Posture; 2024 Jun; 111():182-184. PubMed ID: 38705036 [TBL] [Abstract][Full Text] [Related]
20. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking. Ojeda LV; Rebula JR; Kuo AD; Adamczyk PG Med Eng Phys; 2015 Oct; 37(10):929-36. PubMed ID: 26250066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]