These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32386172)

  • 1. A Survey on Sparse Learning Models for Feature Selection.
    Li X; Wang Y; Ruiz R
    IEEE Trans Cybern; 2022 Mar; 52(3):1642-1660. PubMed ID: 32386172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of high dimensional biomedical data based on feature selection using redundant removal.
    Zhang B; Cao P
    PLoS One; 2019; 14(4):e0214406. PubMed ID: 30964868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation.
    Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L
    JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparative Study on the Potential of Unsupervised Deep Learning-based Feature Selection in Radiomics.
    Haueise T; Liebgott A; Yang B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():541-544. PubMed ID: 36085959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naive Bayes-guided bat algorithm for feature selection.
    Taha AM; Mustapha A; Chen SD
    ScientificWorldJournal; 2013; 2013():325973. PubMed ID: 24396295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relevance sample-feature machine: a sparse Bayesian learning approach to joint feature-sample selection.
    Mohsenzadeh Y; Sheikhzadeh H; Reza AM; Bathaee N; Kalayeh MM
    IEEE Trans Cybern; 2013 Dec; 43(6):2241-54. PubMed ID: 23782842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep self-supervised machine learning algorithms with a novel feature elimination and selection approaches for blood test-based multi-dimensional health risks classification.
    Tutsoy O; Koç GG
    BMC Bioinformatics; 2024 Mar; 25(1):103. PubMed ID: 38459463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bird's Eye View feature selection for high-dimensional data.
    Brahim Belhaouari S; Shakeel MB; Erbad A; Oflaz Z; Kassoul K
    Sci Rep; 2023 Aug; 13(1):13303. PubMed ID: 37587137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairwise Constraint-Guided Sparse Learning for Feature Selection.
    Liu M; Zhang D
    IEEE Trans Cybern; 2016 Jan; 46(1):298-310. PubMed ID: 26151948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Gradient Descent Grey Wolf Optimizer for Optimal Feature Selection.
    Kitonyi PM; Segera DR
    Biomed Res Int; 2021; 2021():2555622. PubMed ID: 34497846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse group selection and analysis of function-related residue for protein-state recognition.
    Bai F; Puk KM; Liu J; Zhou H; Tao P; Zhou W; Wang S
    J Comput Chem; 2022 Jul; 43(20):1342-1354. PubMed ID: 35656889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building Highly Reliable Quantitative Structure-Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection.
    Ruiz IL; Gómez-Nieto MÁ
    J Chem Inf Model; 2020 Jan; 60(1):133-151. PubMed ID: 31940204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis.
    Açıkoğlu M; Tuncer SA
    Med Hypotheses; 2020 Feb; 135():109464. PubMed ID: 31731060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep sparse multi-task learning for feature selection in Alzheimer's disease diagnosis.
    Suk HI; Lee SW; Shen D;
    Brain Struct Funct; 2016 Jun; 221(5):2569-87. PubMed ID: 25993900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection for speech emotion recognition in Spanish and Basque: on the use of machine learning to improve human-computer interaction.
    Arruti A; Cearreta I; Alvarez A; Lazkano E; Sierra B
    PLoS One; 2014; 9(10):e108975. PubMed ID: 25279686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting-State Functional Network Scale Effects and Statistical Significance-Based Feature Selection in Machine Learning Classification.
    Guo H; Li Y; Mensah GK; Xu Y; Chen J; Xiang J; Chen D
    Comput Math Methods Med; 2019; 2019():9108108. PubMed ID: 31781290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems.
    Akinola OA; Agushaka JO; Ezugwu AE
    PLoS One; 2022; 17(10):e0274850. PubMed ID: 36201524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint embedding learning and sparse regression: a framework for unsupervised feature selection.
    Hou C; Nie F; Li X; Yi D; Wu Y
    IEEE Trans Cybern; 2014 Jun; 44(6):793-804. PubMed ID: 23893760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.