These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 32386341)
1. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Hoecker TJ; Higuera PE; Kelly R; Hu FS Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341 [TBL] [Abstract][Full Text] [Related]
2. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Kelly R; Chipman ML; Higuera PE; Stefanova I; Brubaker LB; Hu FS Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13055-60. PubMed ID: 23878258 [TBL] [Abstract][Full Text] [Related]
3. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Barrett CM; Kelly R; Higuera PE; Hu FS Ecology; 2013 Feb; 94(2):389-402. PubMed ID: 23691658 [TBL] [Abstract][Full Text] [Related]
4. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128 [TBL] [Abstract][Full Text] [Related]
5. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Tinner W; Bigler C; Gedye S; Gregory-Eaves I; Jones RT; Kaltenrieder P; Krähenbühl U; Hu FS Ecology; 2008 Mar; 89(3):729-43. PubMed ID: 18459336 [TBL] [Abstract][Full Text] [Related]
6. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change. Yuan FM; Yi SH; McGuire AD; Johnson KD; Liang J; Harden JW; Kasischke ES; Kurz WA Ecol Appl; 2012 Dec; 22(8):2091-109. PubMed ID: 23387112 [TBL] [Abstract][Full Text] [Related]
7. Regional paleofire regimes affected by non-uniform climate, vegetation and human drivers. Blarquez O; Ali AA; Girardin MP; Grondin P; Fréchette B; Bergeron Y; Hély C Sci Rep; 2015 Sep; 5():13356. PubMed ID: 26330162 [TBL] [Abstract][Full Text] [Related]
8. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. Higuera PE; Brubaker LB; Anderson PM; Brown TA; Kennedy AT; Hu FS PLoS One; 2008 Mar; 3(3):e0001744. PubMed ID: 18320025 [TBL] [Abstract][Full Text] [Related]
10. Resilience and sensitivity of ecosystem carbon stocks to fire-regime change in Alaskan tundra. Chen Y; Kelly R; Genet H; Lara MJ; Chipman ML; McGuire AD; Hu FS Sci Total Environ; 2022 Feb; 806(Pt 4):151482. PubMed ID: 34742811 [TBL] [Abstract][Full Text] [Related]
11. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities. Hudspith VA; Belcher CM; Kelly R; Hu FS PLoS One; 2015; 10(4):e0120835. PubMed ID: 25853712 [TBL] [Abstract][Full Text] [Related]
12. Holocene changes in biomass burning in the boreal Northern Hemisphere, reconstructed from anhydrosugar fluxes in an Arctic sediment profile. Chen A; Yang L; Sun L; Gao Y; Xie Z Sci Total Environ; 2023 Apr; 867():161460. PubMed ID: 36626988 [TBL] [Abstract][Full Text] [Related]
13. Resilience of lake biogeochemistry to boreal-forest wildfires during the late Holocene. Chipman ML; Hu FS Biol Lett; 2019 Aug; 15(8):20190390. PubMed ID: 31455173 [TBL] [Abstract][Full Text] [Related]
14. The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests. Molinari C; Lehsten V; Blarquez O; Carcaillet C; Davis BAS; Kaplan JO; Clear J; Bradshaw RHW Glob Chang Biol; 2018 Oct; 24(10):4929-4945. PubMed ID: 29959810 [TBL] [Abstract][Full Text] [Related]
15. Impacts of pre-fire conifer density and wildfire severity on ecosystem structure and function at the forest-tundra ecotone. Walker XJ; Howard BK; Jean M; Johnstone JF; Roland C; Rogers BM; Schuur EAG; Solvik KK; Mack MC PLoS One; 2021; 16(10):e0258558. PubMed ID: 34710129 [TBL] [Abstract][Full Text] [Related]
16. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic. Gustine DD; Brinkman TJ; Lindgren MA; Schmidt JI; Rupp TS; Adams LG PLoS One; 2014; 9(7):e100588. PubMed ID: 24991804 [TBL] [Abstract][Full Text] [Related]
17. Can Siberian alder N-fixation offset N-loss after severe fire? Quantifying post-fire Siberian alder distribution, growth, and N-fixation in boreal Alaska. Houseman B; Ruess R; Hollingsworth T; Verbyla D PLoS One; 2020; 15(9):e0238004. PubMed ID: 32877417 [TBL] [Abstract][Full Text] [Related]
18. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks. Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741 [TBL] [Abstract][Full Text] [Related]
19. Fire as the dominant driver of central Canadian boreal forest carbon balance. Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883 [TBL] [Abstract][Full Text] [Related]
20. Weak climatic control of stand-scale fire history during the late holocene. Gavin DG; Hu FS; Lertzman K; Corbett P Ecology; 2006 Jul; 87(7):1722-32. PubMed ID: 16922322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]