BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32386596)

  • 21. A Call for Systematic Research on Solute Carriers.
    César-Razquin A; Snijder B; Frappier-Brinton T; Isserlin R; Gyimesi G; Bai X; Reithmeier RA; Hepworth D; Hediger MA; Edwards AM; Superti-Furga G
    Cell; 2015 Jul; 162(3):478-87. PubMed ID: 26232220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dTAG system for immediate and target-specific protein degradation.
    Nabet B; Roberts JM; Buckley DL; Paulk J; Dastjerdi S; Yang A; Leggett AL; Erb MA; Lawlor MA; Souza A; Scott TG; Vittori S; Perry JA; Qi J; Winter GE; Wong KK; Gray NS; Bradner JE
    Nat Chem Biol; 2018 May; 14(5):431-441. PubMed ID: 29581585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SLC transporters as therapeutic targets: emerging opportunities.
    Lin L; Yee SW; Kim RB; Giacomini KM
    Nat Rev Drug Discov; 2015 Aug; 14(8):543-60. PubMed ID: 26111766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic in silico discovery of novel solute carrier-like proteins from proteomes.
    Gyimesi G; Hediger MA
    PLoS One; 2022; 17(7):e0271062. PubMed ID: 35901096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae).
    Barat A; Sahoo PK; Kumar R; Pande V
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Oct; 200():54-61. PubMed ID: 27287540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates.
    Mandíková J; Volková M; Pávek P; Česnek M; Janeba Z; Kubíček V; Trejtnar F
    Toxicology; 2013 Sep; 311(3):135-46. PubMed ID: 23856525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian zinc transporters.
    Liuzzi JP; Cousins RJ
    Annu Rev Nutr; 2004; 24():151-72. PubMed ID: 15189117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay.
    Foley CA; Potjewyd F; Lamb KN; James LI; Frye SV
    ACS Chem Biol; 2020 Jan; 15(1):290-295. PubMed ID: 31846298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis and update of the human solute carrier (SLC) gene superfamily.
    He L; Vasiliou K; Nebert DW
    Hum Genomics; 2009 Jan; 3(2):195-206. PubMed ID: 19164095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.
    Okuhira K; Shoda T; Omura R; Ohoka N; Hattori T; Shibata N; Demizu Y; Sugihara R; Ichino A; Kawahara H; Itoh Y; Ishikawa M; Hashimoto Y; Kurihara M; Itoh S; Saito H; Naito M
    Mol Pharmacol; 2017 Mar; 91(3):159-166. PubMed ID: 27965304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy.
    Qi SM; Dong J; Xu ZY; Cheng XD; Zhang WD; Qin JJ
    Front Pharmacol; 2021; 12():692574. PubMed ID: 34025443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery.
    Gu S; Cui D; Chen X; Xiong X; Zhao Y
    Bioessays; 2018 Apr; 40(4):e1700247. PubMed ID: 29473971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands.
    Han X; Zhao L; Xiang W; Qin C; Miao B; Xu T; Wang M; Yang CY; Chinnaswamy K; Stuckey J; Wang S
    J Med Chem; 2019 Dec; 62(24):11218-11231. PubMed ID: 31804827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease.
    Schumann T; König J; Henke C; Willmes DM; Bornstein SR; Jordan J; Fromm MF; Birkenfeld AL
    Pharmacol Rev; 2020 Jan; 72(1):343-379. PubMed ID: 31882442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Solute Carrier Transporters in Glioma Pathology: A Comprehensive Review.
    Anagnostakis F; Kokkorakis M; Markouli M; Piperi C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of Proteolysis-Targeting Chimera Molecules that Selectively Degrade the IRAK3 Pseudokinase.
    Degorce SL; Tavana O; Banks E; Crafter C; Gingipalli L; Kouvchinov D; Mao Y; Pachl F; Solanki A; Valge-Archer V; Yang B; Edmondson SD
    J Med Chem; 2020 Sep; 63(18):10460-10473. PubMed ID: 32803978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species.
    Höglund PJ; Nordström KJ; Schiöth HB; Fredriksson R
    Mol Biol Evol; 2011 Apr; 28(4):1531-41. PubMed ID: 21186191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolysis targeting chimeras (PROTACs) in cancer therapy.
    Ocaña A; Pandiella A
    J Exp Clin Cancer Res; 2020 Sep; 39(1):189. PubMed ID: 32933565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: evolutionary conservation, predicted structure and neuronal co-expression.
    Perland E; Bagchi S; Klaesson A; Fredriksson R
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28878041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders.
    Roberts BL; Ma ZX; Gao A; Leisten ED; Yin D; Xu W; Tang W
    ACS Chem Biol; 2020 Jun; 15(6):1487-1496. PubMed ID: 32255606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.