BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 32386596)

  • 41. Proteolysis-targeting chimeras for targeting protein for degradation.
    Qi J; Zhang G
    Future Med Chem; 2019 Apr; 11(7):723-741. PubMed ID: 30706727
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PROTAC-mediated crosstalk between E3 ligases.
    Steinebach C; Kehm H; Lindner S; Vu LP; Köpff S; López Mármol Á; Weiler C; Wagner KG; Reichenzeller M; Krönke J; Gütschow M
    Chem Commun (Camb); 2019 Feb; 55(12):1821-1824. PubMed ID: 30672516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting Solute Carrier Transporters through Functional Mapping.
    Colas C; Laine E
    Trends Pharmacol Sci; 2021 Jan; 42(1):3-6. PubMed ID: 33234336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light.
    Kounde CS; Shchepinova MM; Saunders CN; Muelbaier M; Rackham MD; Harling JD; Tate EW
    Chem Commun (Camb); 2020 May; 56(41):5532-5535. PubMed ID: 32297626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells.
    Yeh JT; Nam K; Yeh JT; Perrimon N
    Sci Rep; 2017 Feb; 7():41619. PubMed ID: 28176814
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small-molecule PROTACs: novel agents for cancer therapy.
    Wan Y; Yan C; Gao H; Liu T
    Future Med Chem; 2020 May; 12(10):915-938. PubMed ID: 32270707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring and deciphering protein degradation pathways inside cells.
    Daniels DL; Riching KM; Urh M
    Drug Discov Today Technol; 2019 Apr; 31():61-68. PubMed ID: 31200861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The novel class of seven transmembrane segment inverted repeat carriers.
    Chang YN; Geertsma ER
    Biol Chem; 2017 Feb; 398(2):165-174. PubMed ID: 27865089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein binder toolbox for studies of solute carrier transporters.
    Gelová Z; Ingles-Prieto A; Bohstedt T; Frommelt F; Chi G; Chang YN; Garcia J; Wolf G; Azzollini L; Tremolada S; Scacioc A; Hansen JS; Serrano I; Droce A; Cuesta Bernal J; Burgess-Brown NA; Carpenter EP; Dürr KL; Kristensen P; Geertsma ER; Štefanić S; Scarabottolo L; Wiedmer T; Puetter V; Sauer DB; Superti-Furga G
    J Mol Biol; 2024 Jun; ():168665. PubMed ID: 38878854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and functional annotation of solute carrier transporters: implication for drug discovery.
    Dvorak V; Superti-Furga G
    Expert Opin Drug Discov; 2023; 18(10):1099-1115. PubMed ID: 37563933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gene expression in the human endolymphatic sac: the solute carrier molecules in endolymphatic fluid homeostasis.
    Møller MN; Kirkeby S; Vikeså J; Nielsen FC; Cayé-Thomasen P
    Otol Neurotol; 2015 Jun; 36(5):915-22. PubMed ID: 25486439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An ER translocon for multi-pass membrane protein biogenesis.
    McGilvray PT; Anghel SA; Sundaram A; Zhong F; Trnka MJ; Fuller JR; Hu H; Burlingame AL; Keenan RJ
    Elife; 2020 Aug; 9():. PubMed ID: 32820719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Nonradioactive High-Throughput Screening-Compatible Cell-Based Assay to Identify Inhibitors of the Monocarboxylate Transporter Protein 1.
    Bailey TL; Nieto A; McDonald PH
    Assay Drug Dev Technol; 2019 Aug; 17(6):275-284. PubMed ID: 31532712
    [No Abstract]   [Full Text] [Related]  

  • 54. Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters.
    Sreedharan S; Stephansson O; Schiöth HB; Fredriksson R
    Gene; 2011 Jun; 478(1-2):11-8. PubMed ID: 21044875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advances and Challenges in Rational Drug Design for SLCs.
    Garibsingh RA; Schlessinger A
    Trends Pharmacol Sci; 2019 Oct; 40(10):790-800. PubMed ID: 31519459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycosylation of solute carriers: mechanisms and functional consequences.
    Pedersen NB; Carlsson MC; Pedersen SF
    Pflugers Arch; 2016 Feb; 468(2):159-76. PubMed ID: 26383868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras.
    Wang Y; Han L; Liu F; Yang F; Jiang X; Sun H; Feng F; Xue J; Liu W
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110795. PubMed ID: 31991291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Roles of Solute Carriers in Auditory Function.
    Qian F; Jiang X; Chai R; Liu D
    Front Genet; 2022; 13():823049. PubMed ID: 35154281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solute carriers as drug targets: current use, clinical trials and prospective.
    Rask-Andersen M; Masuram S; Fredriksson R; Schiöth HB
    Mol Aspects Med; 2013; 34(2-3):702-10. PubMed ID: 23506903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disordered region of cereblon is required for efficient degradation by proteolysis-targeting chimera.
    Kim K; Lee DH; Park S; Jo SH; Ku B; Park SG; Park BC; Jeon YU; Ahn S; Kang CH; Hwang D; Chae S; Ha JD; Kim S; Hwang JY; Kim JH
    Sci Rep; 2019 Dec; 9(1):19654. PubMed ID: 31873151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.