BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32386607)

  • 1. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy.
    Fukuyama Y; Inoue M; Omae K; Yoshida T; Sako Y
    Adv Appl Microbiol; 2020; 110():99-148. PubMed ID: 32386607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, Genomic Sequence and Physiological Characterization of
    Imaura Y; Okamoto S; Hino T; Ogami Y; Katayama YA; Tanimura A; Inoue M; Kamikawa R; Yoshida T; Sako Y
    Appl Environ Microbiol; 2023 Jun; 89(6):e0018523. PubMed ID: 37219438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Energy Conservation via Alternative Carbon Monoxide Metabolism in Carboxydothermus pertinax Revealed by Comparative Genome Analysis.
    Fukuyama Y; Omae K; Yoneda Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728389
    [No Abstract]   [Full Text] [Related]  

  • 4. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia.
    Techtmann SM; Colman AS; Robb FT
    Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first crenarchaeon capable of growth by anaerobic carbon monoxide oxidation coupled with H
    Kochetkova TV; Mardanov AV; Sokolova TG; Bonch-Osmolovskaya EA; Kublanov IV; Kevbrin VV; Beletsky AV; Ravin NV; Lebedinsky AV
    Syst Appl Microbiol; 2020 Mar; 43(2):126064. PubMed ID: 32044151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes.
    Sokolova TG; Henstra AM; Sipma J; Parshina SN; Stams AJ; Lebedinsky AV
    FEMS Microbiol Ecol; 2009 May; 68(2):131-41. PubMed ID: 19573196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic Analysis of Calderihabitans maritimus KKC1, a Thermophilic, Hydrogenogenic, Carboxydotrophic Bacterium Isolated from Marine Sediment.
    Omae K; Yoneda Y; Fukuyama Y; Yoshida T; Sako Y
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526793
    [No Abstract]   [Full Text] [Related]  

  • 8. Hydrogenogenic and Sulfidogenic Growth of Thermococcus Archaea on Carbon Monoxide and Formate.
    Kozhevnikova DA; Taranov EA; Lebedinsky AV; Bonch-Osmolovskaya EA; Sokolova TG
    Mikrobiologiia; 2016 Jul; 85(4):381-392. PubMed ID: 28853770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.
    Rittmann SKR; Lee HS; Lim JK; Kim TW; Lee JH; Kang SG
    Biotechnol Adv; 2015; 33(1):165-177. PubMed ID: 25461503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity analysis of thermophilic hydrogenogenic carboxydotrophs by carbon monoxide dehydrogenase amplicon sequencing using new primers.
    Omae K; Oguro T; Inoue M; Fukuyama Y; Yoshida T; Sako Y
    Extremophiles; 2021 Jan; 25(1):61-76. PubMed ID: 33415441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological applications of carboxydotrophic bacteria.
    Williams E; Colby J
    Microbiol Sci; 1986 May; 3(5):149-53. PubMed ID: 3153156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.
    Sipma J; Meulepas RJ; Parshina SN; Stams AJ; Lettinga G; Lens PN
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):421-8. PubMed ID: 14556037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea.
    Oelgeschläger E; Rother M
    Arch Microbiol; 2008 Sep; 190(3):257-69. PubMed ID: 18575848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of a thermophilic microbial fuel cell fed with synthesis gas.
    Hussain A; Mehta P; Raghavan V; Wang H; Guiot SR; Tartakovsky B
    Enzyme Microb Technol; 2012 Aug; 51(3):163-70. PubMed ID: 22759536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and distribution of thermophilic hydrogenogenic carboxydotrophs revealed by microbial community analysis in sediments from multiple hydrothermal environments in Japan.
    Omae K; Fukuyama Y; Yasuda H; Mise K; Yoshida T; Sako Y
    Arch Microbiol; 2019 Sep; 201(7):969-982. PubMed ID: 31030239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life on the fringe: microbial adaptation to growth on carbon monoxide.
    Robb FT; Techtmann SM
    F1000Res; 2018; 7():. PubMed ID: 30647903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Engineering of Carbon Monoxide-dependent Hydrogen-producing Machinery in Parageobacillus thermoglucosidasius.
    Adachi Y; Inoue M; Yoshida T; Sako Y
    Microbes Environ; 2020; 35(4):. PubMed ID: 33087627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities.
    Mohr T; Aliyu H; Küchlin R; Zwick M; Cowan D; Neumann A; de Maayer P
    BMC Genomics; 2018 Dec; 19(1):880. PubMed ID: 30522433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring.
    Yoneda Y; Yoshida T; Kawaichi S; Daifuku T; Takabe K; Sako Y
    Int J Syst Evol Microbiol; 2012 Jul; 62(Pt 7):1692-1697. PubMed ID: 21908679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.