BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32386822)

  • 21. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.
    Chitapornpan S; Chiemchaisri C; Chiemchaisri W; Honda R; Yamamoto K
    Bioresour Technol; 2013 Aug; 141():65-74. PubMed ID: 23489563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periodic oxygen supplementation drives efficient metabolism for enhancing valuable bioresource production in photosynthetic bacteria wastewater treatment.
    Lu H; He S; Zhang G; Gao F; Zhao R
    Bioresour Technol; 2022 Mar; 347():126678. PubMed ID: 34999192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff.
    Saejung C; Thammaratana T
    Environ Technol; 2016 Dec; 37(23):3055-61. PubMed ID: 27070497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond.
    Van Den Hende S; Beelen V; Bore G; Boon N; Vervaeren H
    Bioresour Technol; 2014 May; 159():342-54. PubMed ID: 24662311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia.
    Salvadori MR; Ando RA; Oller do Nascimento CA; Corrêa B
    PLoS One; 2014; 9(1):e87968. PubMed ID: 24489975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Algal photosynthetic aeration increases the capacity of bacteria to degrade organics in wastewater.
    Holmes B; Paddock MB; VanderGheynst JS; Higgins BT
    Biotechnol Bioeng; 2020 Jan; 117(1):62-72. PubMed ID: 31531975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.
    Lu H; Zhang G; Lu Y; Zhang Y; Li B; Cao W
    Environ Technol; 2016; 37(7):775-84. PubMed ID: 26360302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of light-dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production.
    Zhi R; Yang A; Zhang G; Zhu Y; Meng F; Li X
    Bioresour Technol; 2019 Feb; 274():496-501. PubMed ID: 30553961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the auto-flocculation of photosynthetic bacteria to realize biomass recovery in brewery wastewater treatment.
    Lu H; Dong S; Zhang G; Han T; Zhang Y; Li B
    Environ Technol; 2019 Jul; 40(16):2147-2156. PubMed ID: 29421961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: different metabolic pathways.
    Lu H; Zhang G; Wan T; Lu Y
    Bioresour Technol; 2011 Oct; 102(20):9503-8. PubMed ID: 21871794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation.
    Hamdy A; Mostafa MK; Nasr M
    Water Sci Technol; 2018 Aug; 78(1-2):367-378. PubMed ID: 30101772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria.
    Wu P; Zhang G; Li J
    J Environ Sci (China); 2015 Feb; 28():43-6. PubMed ID: 25662237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic Study of Nitrate Removal from Aqueous Solutions Using Copper-Coated Iron Nanoparticles.
    Vilardi G; Di Palma L
    Bull Environ Contam Toxicol; 2017 Mar; 98(3):359-365. PubMed ID: 27372457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton.
    Ali A; Gul A; Mannan A; Zia M
    Sci Total Environ; 2018 Oct; 639():26-39. PubMed ID: 29778679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review.
    Lu H; Zhang G; Zheng Z; Meng F; Du T; He S
    Bioresour Technol; 2019 Apr; 278():383-399. PubMed ID: 30683503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cosmetic wastewater treatment with combined light/Fe
    Muszyński A; Marcinowski P; Maksymiec J; Beskowska K; Kalwarczyk E; Bogacki J
    J Hazard Mater; 2019 Oct; 378():120732. PubMed ID: 31200226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.
    Hernández D; Riaño B; Coca M; García-González MC
    Bioresour Technol; 2013 May; 135():598-603. PubMed ID: 23069610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles.
    Wang F; Yang W; Zheng F; Sun Y
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30275389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH(4)(+)-N reduction.
    Hou L; Xia J; Li K; Chen J; Wu X; Li X
    Water Sci Technol; 2013; 67(2):254-60. PubMed ID: 23168621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving biomass resource recycling capacity of Rubrivivax gelatinosus cultivated in wastewater through regulating the generation and use of energy.
    Wu P; Wang YL; Zhang GM; Liu XS; Du C; Tong QY; Li N
    Environ Technol; 2014; 35(17-20):2604-9. PubMed ID: 25145217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.