These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32386890)

  • 1. Monitoring Proteolytic Activity in Real Time: A New World of Opportunities for Biosensors.
    Oliveira-Silva R; Sousa-Jerónimo M; Botequim D; Silva NJO; Paulo PMR; Prazeres DMF
    Trends Biochem Sci; 2020 Jul; 45(7):604-618. PubMed ID: 32386890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease-Activated Sensors for In Vivo Imaging of Cell Populations.
    Eschliman K; Bossmann SH
    Methods Mol Biol; 2020; 2126():117-126. PubMed ID: 32112384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease-activated nanomaterials for targeted cancer theranostics.
    Chan YC; Hsiao M
    Nanomedicine (Lond); 2017 Sep; 12(18):2153-2159. PubMed ID: 28814163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges.
    Choi JH
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic signaling in cancer.
    Salardani M; Barcick U; Zelanis A
    Expert Rev Proteomics; 2023; 20(12):345-355. PubMed ID: 37873978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in protease activity assays and sensors.
    Ong ILH; Yang KL
    Analyst; 2017 May; 142(11):1867-1881. PubMed ID: 28487913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantable biosensors and their contribution to the future of precision medicine.
    Gray M; Meehan J; Ward C; Langdon SP; Kunkler IH; Murray A; Argyle D
    Vet J; 2018 Sep; 239():21-29. PubMed ID: 30197105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides.
    Bollella P; Edwardraja S; Guo Z; Vickers CE; Whitfield J; Walden P; Melman A; Alexandrov K; Katz E
    ACS Sens; 2021 Oct; 6(10):3596-3603. PubMed ID: 34637274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs.
    Shumeiko V; Paltiel Y; Bisker G; Hayouka Z; Shoseyov O
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32937986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning.
    Petushkova AI; Zamyatnin AA
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32340246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects.
    Mahato K; Srivastava A; Chandra P
    Biosens Bioelectron; 2017 Oct; 96():246-259. PubMed ID: 28501745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification.
    Klein T; Eckhard U; Dufour A; Solis N; Overall CM
    Chem Rev; 2018 Feb; 118(3):1137-1168. PubMed ID: 29265812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity.
    Rodriguez-Rios M; Megia-Fernandez A; Norman DJ; Bradley M
    Chem Soc Rev; 2022 Mar; 51(6):2081-2120. PubMed ID: 35188510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates.
    Sabino F; Hermes O; Egli FE; Kockmann T; Schlage P; Croizat P; Kizhakkedathu JN; Smola H; auf dem Keller U
    Mol Cell Proteomics; 2015 Feb; 14(2):354-70. PubMed ID: 25516628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of antibody-hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity.
    Wildeboer D; Jiang P; Price RG; Yu S; Jeganathan F; Abuknesha RA
    Talanta; 2010 Apr; 81(1-2):68-75. PubMed ID: 20188889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation Biosensors-Versatile Tools to Probe Protein Functions in Living Cells.
    Fetz V; Stauber RH; Knauer SK
    Methods Mol Biol; 2018; 1683():195-210. PubMed ID: 29082494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the N-Terminome in Tissue Biopsies by PCT-TAILS.
    Bundgaard L; Savickas S; Auf dem Keller U
    Methods Mol Biol; 2020; 2043():285-296. PubMed ID: 31463921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.