BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32387706)

  • 1. Longitudinal changes in dynamic characteristics of neonatal external and middle ears.
    Kanka N; Murakoshi M; Hamanishi S; Kakuta R; Matsutani S; Kobayashi T; Wada H
    Int J Pediatr Otorhinolaryngol; 2020 Jul; 134():110061. PubMed ID: 32387706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic characteristics of the middle ear in neonates.
    Murakoshi M; Yoshida N; Sugaya M; Ogawa Y; Hamanishi S; Kiyokawa H; Kakuta R; Yamada M; Takahashi R; Tanigawara S; Matsutani S; Kobayashi T; Wada H
    Int J Pediatr Otorhinolaryngol; 2013 Apr; 77(4):504-12. PubMed ID: 23312352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ear canal static pressure on the dynamic behaviour of outer and middle ear in newborns.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    Int J Pediatr Otorhinolaryngol; 2016 Mar; 82():64-72. PubMed ID: 26857318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sweep frequency impedance measures in Australian Aboriginal and Caucasian neonates.
    Aithal V; Kei J; Driscoll C; Swanston A; Murakoshi M; Wada H
    Int J Pediatr Otorhinolaryngol; 2015 Jul; 79(7):1024-9. PubMed ID: 25930171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normative sweep frequency impedance measures in healthy neonates.
    Aithal V; Kei J; Driscoll C; Swanston A; Roberts K; Murakoshi M; Wada H
    J Am Acad Audiol; 2014 Apr; 25(4):343-54. PubMed ID: 25126682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sweep frequency impedance measures in young infants: developmental characteristics from birth to 6 months.
    Aithal V; Kei J; Driscoll C; Murakoshi M; Wada H
    Int J Audiol; 2017 Mar; 56(3):154-163. PubMed ID: 27780372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry.
    Keefe DH; Levi E
    Ear Hear; 1996 Oct; 17(5):361-73. PubMed ID: 8909884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ear-canal impedance and reflection coefficient in human infants and adults.
    Keefe DH; Bulen JC; Arehart KH; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2617-38. PubMed ID: 8270739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External- and middle-ear factors affecting evoked otoacoustic emissions in neonates.
    Thornton AR; Kimm L; Kennedy CR; Cafarelli-Dees D
    Br J Audiol; 1993 Oct; 27(5):319-27. PubMed ID: 8205077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ear canal pressure and age on wideband absorbance in young infants.
    Aithal S; Aithal V; Kei J
    Int J Audiol; 2017 May; 56(5):346-355. PubMed ID: 28599603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal changes in real-ear to coupler difference measurements in infants.
    Bingham K; Jenstad LM; Shahnaz N
    J Am Acad Audiol; 2009 Oct; 20(9):558-68. PubMed ID: 19902703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acoustic properties of the infant ear. A preliminary report.
    Kruger B; Ruben RJ
    Acta Otolaryngol; 1987; 103(5-6):578-85. PubMed ID: 3618184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of middle ear function in young children: clinical guidelines for the use of 226- and 1,000-Hz tympanometry.
    Alaerts J; Luts H; Wouters J
    Otol Neurotol; 2007 Sep; 28(6):727-32. PubMed ID: 17948353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressurized Wideband Absorbance Findings in Healthy Neonates: A Preliminary Study.
    Wali HA; Mazlan R; Kei J
    J Speech Lang Hear Res; 2017 Oct; 60(10):2965-2973. PubMed ID: 28975265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Longitudinal Analysis of Pressurized Wideband Absorbance Measures in Healthy Young Infants.
    Wali HA; Mazlan R; Kei J
    Ear Hear; 2019; 40(5):1233-1241. PubMed ID: 30807541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions.
    Whitehead ML; Stagner BB; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Dec; 98(6):3200-14. PubMed ID: 8550945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Measurement of sound pressure level at outlet of external auditory canal and eardrum].
    Liu JL; Qin XL; Wang LH; Liang CY; Jiang T
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):353-5. PubMed ID: 14761398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.