BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32387706)

  • 21. A new method to estimate sound energy entering the middle ear.
    Chen S; Deng J; Bian L; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():29-32. PubMed ID: 24109616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Middle ear dynamic characteristics in patients with otosclerosis.
    Zhao F; Wada H; Koike T; Ohyama K; Kawase T; Stephens D
    Ear Hear; 2002 Apr; 23(2):150-8. PubMed ID: 11951850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of probe insertion methods on estimates of ear canal SPL.
    Dirks DD; Ahlstrom JB; Eisenberg LS
    J Am Acad Audiol; 1996 Jan; 7(1):31-8. PubMed ID: 8718490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wideband reflectance in Down syndrome.
    Soares JC; Urosas JG; Calarga KS; Pichelli TS; Limongi SC; Shahnaz N; Carvallo RM
    Int J Pediatr Otorhinolaryngol; 2016 Aug; 87():164-71. PubMed ID: 27368466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustics of ear canal measurement of eardrum SPL in simulators.
    Gilman S; Dirks DD
    J Acoust Soc Am; 1986 Sep; 80(3):783-93. PubMed ID: 3760332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.
    Rodriguez AI; Thomas MLA; Janky KL
    Ear Hear; 2019; 40(1):192-203. PubMed ID: 29870520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifrequency tympanometry in neonatal intensive care unit and well babies.
    Shahnaz N; Miranda T; Polka L
    J Am Acad Audiol; 2008 May; 19(5):392-418. PubMed ID: 19253812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wideband acoustic immittance measures: developmental characteristics (0 to 12 months).
    Kei J; Sanford CA; Prieve BA; Hunter LL
    Ear Hear; 2013 Jul; 34 Suppl 1():17S-26S. PubMed ID: 23900174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants.
    Hunter LL; Keefe DH; Feeney MP; Fitzpatrick DF; Lin L
    Hear Res; 2016 Oct; 340():3-14. PubMed ID: 26712451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.
    Keefe DH; Bulen JC; Campbell SL; Burns EM
    J Acoust Soc Am; 1994 Jan; 95(1):355-71. PubMed ID: 8120247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the middle ear in neonatal chinchillas. I. Birth to 14 days.
    Hsu GS; Margolis RH; Schachern PA
    Acta Otolaryngol; 2000 Oct; 120(8):922-32. PubMed ID: 11200586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longitudinal Development of Distortion Product Otoacoustic Emissions in Infants With Normal Hearing.
    Hunter LL; Blankenship CM; Keefe DH; Feeney MP; Brown DK; McCune A; Fitzpatrick DF; Lin L
    Ear Hear; 2018; 39(5):863-873. PubMed ID: 29369290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The radiation impedance of the external ear of cat: measurements and applications.
    Rosowski JJ; Carney LH; Peake WT
    J Acoust Soc Am; 1988 Nov; 84(5):1695-708. PubMed ID: 3209774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs.
    Naghibolhosseini M; Long GR
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):121-138. PubMed ID: 27796594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.