These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32387722)

  • 1. Attention capture by episodic long-term memory.
    Nickel AE; Hopkins LS; Minor GN; Hannula DE
    Cognition; 2020 Aug; 201():104312. PubMed ID: 32387722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner.
    Foerster RM; Schneider WX
    Cognition; 2018 Mar; 172():37-45. PubMed ID: 29223864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oculomotor capture by search-irrelevant features in visual working memory: on the crucial role of target-distractor similarity.
    Foerster RM; Schneider WX
    Atten Percept Psychophys; 2020 Jul; 82(5):2379-2392. PubMed ID: 32166644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Object features reinstated from episodic memory guide attentional selection.
    Kerzel D; Andres MK
    Cognition; 2020 Apr; 197():104158. PubMed ID: 31986352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term memory for distractors: Effects of involuntary attention from working memory.
    Moriya J
    Mem Cognit; 2024 Feb; 52(2):401-416. PubMed ID: 37768481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional capture is contingent on scene region: Using surface guidance framework to explore attentional mechanisms during search.
    Pereira EJ; Castelhano MS
    Psychon Bull Rev; 2019 Aug; 26(4):1273-1281. PubMed ID: 31161527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic selection of irrelevant object features through working memory: evidence for top-down attentional capture.
    Soto D; Humphreys GW
    Exp Psychol; 2009; 56(3):165-72. PubMed ID: 19289358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trial-by-trial adjustments of top-down set modulate oculomotor capture.
    Moher J; Abrams J; Egeth HE; Yantis S; Stuphorn V
    Psychon Bull Rev; 2011 Oct; 18(5):897-903. PubMed ID: 21691926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.
    Silvis JD; Belopolsky AV; Murris JW; Donk M
    PLoS One; 2015; 10(11):e0142696. PubMed ID: 26566137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oculomotor capture reveals trial-by-trial neural correlates of attentional guidance by contents of visual working memory.
    Beck VM; Vickery TJ
    Cortex; 2020 Jan; 122():159-169. PubMed ID: 30392969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-capture processes contribute to statistical learning of distractor locations in visual search.
    Sauter M; Hanning NM; Liesefeld HR; Müller HJ
    Cortex; 2021 Feb; 135():108-126. PubMed ID: 33360756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between memorized objects and abrupt onsets in oculomotor capture.
    Wong JH; Peterson MS
    Atten Percept Psychophys; 2011 Aug; 73(6):1768-79. PubMed ID: 21533921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of memory for visual search in scenes.
    Le-Hoa Võ M; Wolfe JM
    Ann N Y Acad Sci; 2015 Mar; 1339(1):72-81. PubMed ID: 25684693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic and intentional influences on saccade landing.
    Aagten-Murphy D; Bays PM
    J Neurophysiol; 2017 Aug; 118(2):1105-1122. PubMed ID: 28539394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of single and multiple onset distractors on visual search for singleton targets.
    Kramer AF; Cassavaugh ND; Irwin DE; Peterson MS; Hahn S
    Percept Psychophys; 2001 Aug; 63(6):952-68. PubMed ID: 11578057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature-based guidance of attention during post-saccadic selection.
    Hollingworth A; Matsukura M
    Atten Percept Psychophys; 2019 Aug; 81(6):1822-1835. PubMed ID: 30980343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between top-down and bottom-up attention in barn owls (Tyto alba).
    Lev-Ari T; Gutfreund Y
    Anim Cogn; 2018 Mar; 21(2):197-205. PubMed ID: 29214438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map.
    Pearson D; Osborn R; Whitford TJ; Failing M; Theeuwes J; Le Pelley ME
    Atten Percept Psychophys; 2016 Oct; 78(7):2226-40. PubMed ID: 27184056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional capture by incongruent object/background scenes in patients with Alzheimer disease.
    Lenoble Q; Corveleyn X; Szaffarczyk S; Pasquier F; Boucart M
    Cortex; 2018 Oct; 107():4-12. PubMed ID: 30006000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Display probability modulates attentional capture by onset distractors.
    Sayim B; Grubert A; Herzog MH; Krummenacher J
    J Vis; 2010 Mar; 10(3):10.1-8. PubMed ID: 20377287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.