These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 32387877)
1. Non-destructive assessment of the myoglobin content of Tan sheep using hyperspectral imaging. Cheng L; Liu G; He J; Wan G; Ma C; Ban J; Ma L Meat Sci; 2020 Sep; 167():107988. PubMed ID: 32387877 [TBL] [Abstract][Full Text] [Related]
2. Determination of sugar content in Lingwu jujube by NIR-hyperspectral imaging. Yang X; Liu G; He J; Kang N; Yuan R; Fan N J Food Sci; 2021 Apr; 86(4):1201-1214. PubMed ID: 33770419 [TBL] [Abstract][Full Text] [Related]
3. Combination of spectra and texture data of hyperspectral imaging for prediction and visualization of palmitic acid and oleic acid contents in lamb meat. Wang C; Wang S; He X; Wu L; Li Y; Guo J Meat Sci; 2020 Nov; 169():108194. PubMed ID: 32521405 [TBL] [Abstract][Full Text] [Related]
4. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system. Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238 [TBL] [Abstract][Full Text] [Related]
5. Development of Simplified Models for Non-Destructive Hyperspectral Imaging Monitoring of S-ovalbumin Content in Eggs during Storage. Yao K; Sun J; Cheng J; Xu M; Chen C; Zhou X; Dai C Foods; 2022 Jul; 11(14):. PubMed ID: 35885270 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel quantitative function between spectral value and metmyoglobin content in Tan mutton. Cheng LJ; Liu GS; He JG; Wan GL; Ban JJ; Yuan RR; Fan NY Food Chem; 2021 Apr; 342():128351. PubMed ID: 33172751 [TBL] [Abstract][Full Text] [Related]
7. Integrated spectral and textural features of hyperspectral imaging for prediction and visualization of stearic acid content in lamb meat. Wang Y; Wang C; Dong F; Wang S Anal Methods; 2021 Sep; 13(36):4157-4168. PubMed ID: 34554149 [TBL] [Abstract][Full Text] [Related]
8. Nondestructive detection of total soluble solids in grapes using VMD-RC and hyperspectral imaging. Xu M; Sun J; Yao K; Wu X; Shen J; Cao Y; Zhou X J Food Sci; 2022 Jan; 87(1):326-338. PubMed ID: 34940982 [TBL] [Abstract][Full Text] [Related]
9. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Zhao HT; Feng YZ; Chen W; Jia GF Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565 [TBL] [Abstract][Full Text] [Related]
10. A global calibration model for prediction of intramuscular fat and pH in red meat using hyperspectral imaging. Dixit Y; Al-Sarayreh M; Craigie CR; Reis MM Meat Sci; 2021 Nov; 181():108405. PubMed ID: 33451871 [TBL] [Abstract][Full Text] [Related]
11. Estimation Model for Maize Multi-Components Based on Hyperspectral Data. Xue H; Xu X; Meng X Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338856 [TBL] [Abstract][Full Text] [Related]
12. Combination of hyperspectral imaging and entropy weight method for the comprehensive assessment of antioxidant enzyme activity in Tan mutton. Liu S; Dong F; Hao J; Qiao L; Guo J; Wang S; Luo R; Lv Y; Cui J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122342. PubMed ID: 36682252 [TBL] [Abstract][Full Text] [Related]
13. Robustness of hyperspectral imaging and PLSR model predictions of intramuscular fat in lamb M. longissimus lumborum across several flocks and years. Hitchman S; Loeffen MPF; Reis MM; Craigie CR Meat Sci; 2021 Sep; 179():108492. PubMed ID: 33771427 [TBL] [Abstract][Full Text] [Related]
14. Hyperspectral Imaging (HSI) Technology for the Non-Destructive Freshness Assessment of Pearl Gentian Grouper under Different Storage Conditions. Chen Z; Wang Q; Zhang H; Nie P Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467476 [TBL] [Abstract][Full Text] [Related]
15. Predictability of carcass traits in live Tan sheep by real-time ultrasound technology with least-squares support vector machines. Fan N; Liu G; Zhang C; Zhang J; Yu J; Sun Y Anim Sci J; 2022; 93(1):e13733. PubMed ID: 35537808 [TBL] [Abstract][Full Text] [Related]
16. Monitoring microstructural changes and moisture distribution of dry-cured pork: a combined confocal laser scanning microscopy and hyperspectral imaging study. Tian XY; Aheto JH; Dai C; Ren Y; Bai JW J Sci Food Agric; 2021 May; 101(7):2727-2735. PubMed ID: 33124042 [TBL] [Abstract][Full Text] [Related]
17. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging. Cheng J; Sun J; Yao K; Xu M; Zhou X Meat Sci; 2022 Dec; 194():108975. PubMed ID: 36126392 [TBL] [Abstract][Full Text] [Related]
18. Potential of hyperspectral imaging for nondestructive determination of α-farnesene and conjugated trienol content in 'Yali' pear. Cheng H; Zhang Z; Cheng Y; Guan J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124688. PubMed ID: 38941754 [TBL] [Abstract][Full Text] [Related]
19. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703 [TBL] [Abstract][Full Text] [Related]
20. Prediction of freezing point and moisture distribution of beef with dual freeze-thaw cycles using hyperspectral imaging. Wei Q; Pan C; Pu H; Sun DW; Shen X; Wang Z Food Chem; 2024 Oct; 456():139868. PubMed ID: 38870825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]