BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32387897)

  • 1. Generation of three induced pluripotent stem cell lines from a Parkinson's disease patient with mutant PARKIN (p. C253Y).
    Tariq M; Liu H; Ibañez DP; Li Y; Chen S; Jiang M; Fan W; Zhao P; Luo Z; Wang D; Kanwal S
    Stem Cell Res; 2020 May; 45():101822. PubMed ID: 32387897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of hiPSCs (JUCGRMi003-A) from a patient with Parkinson's disease with PARK2 mutation.
    Ishikawa KI; Okuzumi A; Yoshino H; Hattori N; Akamatsu W
    Stem Cell Res; 2024 Apr; 76():103323. PubMed ID: 38309147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation.
    Okarmus J; Bogetofte H; Schmidt SI; Ryding M; García-López S; Ryan BJ; Martínez-Serrano A; Hyttel P; Meyer M
    Sci Rep; 2020 Jun; 10(1):10278. PubMed ID: 32581291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a PARK2 homozygous knockout induced pluripotent stem cell line (GIBHi002-A-1) with two common isoforms abolished.
    Zhang M; Ibañez DP; Fan W; Liu H; Zhong X; Wang X; Li Y; Md Abdul M; Li W; Li Y; Ward C; Chen S; Wang D; Qin B; Esteban MA; Zhao P; Luo Z
    Stem Cell Res; 2019 Dec; 41():101602. PubMed ID: 31698191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function.
    Hwang CJ; Kim YE; Son DJ; Park MH; Choi DY; Park PH; Hellström M; Han SB; Oh KW; Park EK; Hong JT
    Redox Biol; 2017 Apr; 11():456-468. PubMed ID: 28086194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parkin Maintains Robust Pacemaking in Human Induced Pluripotent Stem Cell-Derived A9 Dopaminergic Neurons.
    Pu J; Lin L; Jiang H; Hu Z; Li H; Yan Z; Zhang B; Feng J
    Mov Disord; 2023 Jul; 38(7):1273-1281. PubMed ID: 37166002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Parkin in the Neuronal Progenitor Cells from a Patient with Parkinson's Disease Shifts the Transcriptome Towards the Normal State.
    Lebedeva O; Poberezhniy D; Novosadova E; Gerasimova T; Novosadova L; Arsenyeva E; Stepanenko E; Shimchenko D; Volovikov E; Anufrieva K; Illarioshkin S; Lagarkova M; Grivennikov I; Tarantul V; Nenasheva V
    Mol Neurobiol; 2023 Jun; 60(6):3522-3533. PubMed ID: 36884134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 11. Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease.
    Kuzumaki N; Suda Y; Iwasawa C; Narita M; Sone T; Watanabe M; Maekawa A; Matsumoto T; Akamatsu W; Igarashi K; Tamura H; Takeshima H; Tawfik VL; Ushijima T; Hattori N; Okano H; Narita M
    Brain; 2019 Jun; 142(6):1675-1689. PubMed ID: 31135049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations.
    Gautier CA; Erpapazoglou Z; Mouton-Liger F; Muriel MP; Cormier F; Bigou S; Duffaure S; Girard M; Foret B; Iannielli A; Broccoli V; Dalle C; Bohl D; Michel PP; Corvol JC; Brice A; Corti O
    Hum Mol Genet; 2016 Jul; 25(14):2972-2984. PubMed ID: 27206984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons.
    Ren Y; Jiang H; Hu Z; Fan K; Wang J; Janoschka S; Wang X; Ge S; Feng J
    Stem Cells; 2015 Jan; 33(1):68-78. PubMed ID: 25332110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synaptic function of parkin.
    Sassone J; Serratto G; Valtorta F; Silani V; Passafaro M; Ciammola A
    Brain; 2017 Sep; 140(9):2265-2272. PubMed ID: 28335015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.
    Suda Y; Kuzumaki N; Sone T; Narita M; Tanaka K; Hamada Y; Iwasawa C; Shibasaki M; Maekawa A; Matsuo M; Akamatsu W; Hattori N; Okano H; Narita M
    Mol Brain; 2018 Feb; 11(1):6. PubMed ID: 29458391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. USP30 inhibition induces mitophagy and reduces oxidative stress in parkin-deficient human neurons.
    Okarmus J; Agergaard JB; Stummann TC; Haukedal H; Ambjørn M; Freude KK; Fog K; Meyer M
    Cell Death Dis; 2024 Jan; 15(1):52. PubMed ID: 38225227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells.
    Li H; Jiang H; Zhang B; Feng J
    J Parkinsons Dis; 2018; 8(4):479-493. PubMed ID: 30149462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin absence accelerates microtubule aging in dopaminergic neurons.
    Cartelli D; Amadeo A; Calogero AM; Casagrande FVM; De Gregorio C; Gioria M; Kuzumaki N; Costa I; Sassone J; Ciammola A; Hattori N; Okano H; Goldwurm S; Roybon L; Pezzoli G; Cappelletti G
    Neurobiol Aging; 2018 Jan; 61():66-74. PubMed ID: 29040870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.