These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 32388542)
21. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions. Mishra SK; Koča J J Phys Chem B; 2018 Aug; 122(34):8113-8121. PubMed ID: 30084252 [TBL] [Abstract][Full Text] [Related]
22. A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation. Rifai EA; van Dijk M; Vermeulen NPE; Yanuar A; Geerke DP J Chem Inf Model; 2019 Sep; 59(9):4018-4033. PubMed ID: 31461271 [TBL] [Abstract][Full Text] [Related]
23. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Sun H; Duan L; Chen F; Liu H; Wang Z; Pan P; Zhu F; Zhang JZH; Hou T Phys Chem Chem Phys; 2018 May; 20(21):14450-14460. PubMed ID: 29785435 [TBL] [Abstract][Full Text] [Related]
24. Accurate calculation of absolute free energy of binding for SHP2 allosteric inhibitors using free energy perturbation. Liang L; Liu H; Xing G; Deng C; Hua Y; Gu R; Lu T; Chen Y; Zhang Y Phys Chem Chem Phys; 2022 May; 24(17):9904-9920. PubMed ID: 35416820 [TBL] [Abstract][Full Text] [Related]
26. Alanine scanning combined with interaction entropy studying the differences of binding mechanism on HIV-1 and HIV-2 proteases with inhibitor. Cong Y; Duan L; Huang K; Bao J; Zhang JZH J Biomol Struct Dyn; 2021 Mar; 39(5):1588-1599. PubMed ID: 32100625 [TBL] [Abstract][Full Text] [Related]
27. Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes. Miranda WE; Noskov SY; Valiente PA J Chem Inf Model; 2015 Sep; 55(9):1867-77. PubMed ID: 26180998 [TBL] [Abstract][Full Text] [Related]
28. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257 [TBL] [Abstract][Full Text] [Related]
29. Empirical calculation of the relative free energies of peptide binding to the molecular chaperone DnaK. Kasper P; Christen P; Gehring H Proteins; 2000 Aug; 40(2):185-92. PubMed ID: 10842335 [TBL] [Abstract][Full Text] [Related]
30. Affinity Calculations of Cyclodextrin Host-Guest Complexes: Assessment of Strengths and Weaknesses of End-Point Free Energy Methods. Suárez D; Díaz N J Chem Inf Model; 2019 Jan; 59(1):421-440. PubMed ID: 30566348 [TBL] [Abstract][Full Text] [Related]
31. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
32. Protein-ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors. Zoete V; Michielin O; Karplus M J Comput Aided Mol Des; 2003 Dec; 17(12):861-80. PubMed ID: 15124934 [TBL] [Abstract][Full Text] [Related]
33. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142 [TBL] [Abstract][Full Text] [Related]
34. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. Meher BR; Wang Y J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286 [TBL] [Abstract][Full Text] [Related]
35. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. Oehme DP; Brownlee RT; Wilson DJ J Comput Chem; 2012 Dec; 33(32):2566-80. PubMed ID: 22915442 [TBL] [Abstract][Full Text] [Related]
36. Including explicit water molecules as part of the protein structure in MM/PBSA calculations. Zhu YL; Beroza P; Artis DR J Chem Inf Model; 2014 Feb; 54(2):462-9. PubMed ID: 24432790 [TBL] [Abstract][Full Text] [Related]
37. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S; Kollman PA Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190 [TBL] [Abstract][Full Text] [Related]
38. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. Hou T; Wang J; Li Y; Wang W J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517 [TBL] [Abstract][Full Text] [Related]
39. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Wang W; Wang J; Kollman PA Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025 [TBL] [Abstract][Full Text] [Related]
40. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Wang J; Morin P; Wang W; Kollman PA J Am Chem Soc; 2001 Jun; 123(22):5221-30. PubMed ID: 11457384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]