These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32388588)

  • 1. Effects of oligolignol sizes and binding modes on a GH11 xylanase inhibition revealed by molecular modeling techniques.
    Muhammad A; Khunrae P; Sutthibutpong T
    J Mol Model; 2020 May; 26(6):124. PubMed ID: 32388588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effects between the additions of a disulphide bridge and an N-terminal hydrophobic sidechain on the binding pocket tilting and enhanced Xyn11A activity.
    Boonyaputthikul H; Muhammad A; Roekring S; Rattanarojpong T; Khunrae P; Sutthibutpong T
    Arch Biochem Biophys; 2019 Sep; 672():108068. PubMed ID: 31401092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal region of xylanase domain in Xyn11A from Paenibacillus curdlanolyticus B-6 plays an important role in structural stability.
    Sermsathanaswadi J; Pianwanit S; Pason P; Waeonukul R; Tachaapaikoon C; Ratanakhanokchai K; Septiningrum K; Kosugi A
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8223-33. PubMed ID: 24788327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
    Gagné D; Narayanan C; Nguyen-Thi N; Roux LD; Bernard DN; Brunzelle JS; Couture JF; Agarwal PK; Doucet N
    Biochemistry; 2016 Aug; 55(30):4184-96. PubMed ID: 27387012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations.
    Shamim A; Abbasi SW; Azam SS
    J Mol Graph Model; 2015 Jul; 60():180-96. PubMed ID: 26059477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.
    Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN
    J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 for catalytic efficiency improvement on kenaf biomass hydrolysis.
    Damis SIR; Murad AMA; Diba Abu Bakar F; Rashid SA; Jaafar NR; Illias RM
    Enzyme Microb Technol; 2019 Dec; 131():109383. PubMed ID: 31615675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers.
    Watts HD; Mohamed MN; Kubicki JD
    J Phys Chem B; 2011 Mar; 115(9):1958-70. PubMed ID: 21319787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.
    Song L; Dumon C; Siguier B; André I; Eneyskaya E; Kulminskaya A; Bozonnet S; O'Donohue MJ
    J Biotechnol; 2014 Mar; 174():64-72. PubMed ID: 24440633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance.
    Diogo JA; Hoffmam ZB; Zanphorlin LM; Cota J; Machado CB; Wolf LD; Squina F; Damásio AR; Murakami MT; Ruller R
    Enzyme Microb Technol; 2015 Feb; 69():31-7. PubMed ID: 25640722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations.
    Zaman Z; Khan S; Nouroz F; Farooq U; Urooj A
    Life Sci; 2021 Jan; 264():118621. PubMed ID: 33164832
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Singh AK; Katari SK; Umamaheswari A; Raj A
    RSC Adv; 2021 Apr; 11(24):14632-14653. PubMed ID: 35423962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative Binding Affinities of Monolignols to Horseradish Peroxidase.
    Sangha AK; Petridis L; Cheng X; Smith JC
    J Phys Chem B; 2016 Aug; 120(31):7635-40. PubMed ID: 27447548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EcXyl43 β-xylosidase: molecular modeling, activity on natural and artificial substrates, and synergism with endoxylanases for lignocellulose deconstruction.
    Ontañon OM; Ghio S; Marrero Díaz de Villegas R; Piccinni FE; Talia PM; Cerutti ML; Campos E
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6959-6971. PubMed ID: 29876606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85.
    McAllister KA; Marrone L; Clarke AJ
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):342-52. PubMed ID: 11004572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem.
    Damiani I; Morreel K; Danoun S; Goeminne G; Yahiaoui N; Marque C; Kopka J; Messens E; Goffner D; Boerjan W; Boudet AM; Rochange S
    Plant Mol Biol; 2005 Nov; 59(5):753-69. PubMed ID: 16270228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment.
    Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z
    Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.