These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32388602)

  • 41. Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling.
    Wang WY; Jia LJ; Luo Y; Zhang HH; Cai F; Mao H; Xu WC; Fang JB; Peng ZY; Ma ZW; Chen YH; Zhang J; Wei Z; Yu BW; Hu SF
    Mol Neurobiol; 2016 Jan; 53(1):216-230. PubMed ID: 25421211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells.
    Hirai H; Launey T
    J Neurosci; 2000 Jul; 20(14):5217-24. PubMed ID: 10884305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutamate N-methyl-D-aspartate and dopamine receptors have contrasting effects on the limbic versus the somatosensory cortex with respect to amphetamine-induced neurodegeneration.
    Bowyer JF; Delongchamp RR; Jakab RL
    Brain Res; 2004 Dec; 1030(2):234-46. PubMed ID: 15571672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists.
    Eriksson C; Zou LP; Ahlenius S; Winblad B; Schultzberg M
    Brain Res Mol Brain Res; 2000 Dec; 85(1-2):103-13. PubMed ID: 11146112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.
    Lalo U; Pankratov Y; Kirchhoff F; North RA; Verkhratsky A
    J Neurosci; 2006 Mar; 26(10):2673-83. PubMed ID: 16525046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation.
    Fan Y; He JJ
    J Biol Chem; 2016 Oct; 291(43):22819-22829. PubMed ID: 27609520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective activation of calcium permeability by aspartate in Purkinje cells.
    Yuzaki M; Forrest D; Curran T; Connor JA
    Science; 1996 Aug; 273(5278):1112-4. PubMed ID: 8688099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of nitric oxide-induced nuclear localization of CAPON by NMDA receptor antagonist in cultured rat primary astrocytes.
    Jiang J; Yan M; Lv Q; Cheng C; Li X; Guo Z; Tao T; Shen A
    Neurochem Int; 2010 Mar; 56(4):561-8. PubMed ID: 20064573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.
    Löscher W; Lehmann H; Behl B; Seemann D; Teschendorf HJ; Hofmann HP; Lubisch W; Höger T; Lemaire HG; Gross G
    Eur J Neurosci; 1999 Jan; 11(1):250-62. PubMed ID: 9987029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. N-methyl-D-aspartate receptor blockade after status epilepticus protects against limbic brain damage but not against epilepsy in the kainate model of temporal lobe epilepsy.
    Brandt C; Potschka H; Löscher W; Ebert U
    Neuroscience; 2003; 118(3):727-40. PubMed ID: 12710980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glial cell reactivity and oxidative stress prevention in Alzheimer's disease mice model by an optimized NMDA receptor antagonist.
    Companys-Alemany J; Turcu AL; Vázquez S; Pallàs M; Griñán-Ferré C
    Sci Rep; 2022 Oct; 12(1):17908. PubMed ID: 36284170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development.
    Low SJ; Roland CL
    Int J Clin Pharmacol Ther; 2004 Jan; 42(1):1-14. PubMed ID: 14756381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons.
    Grigorev VV; Dranyi OA; Bachurin SO
    Bull Exp Biol Med; 2003 Nov; 136(5):474-7. PubMed ID: 14968164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous blockade of NMDA receptors and PARP-1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3-nitropropionic acid intoxicated mice: Evidences from memantine and 3-aminobenzamide interventions.
    Chidambaram SB; Vijayan R; Sekar S; Mani S; Rajamani B; Ganapathy R
    Eur J Pharmacol; 2017 May; 803():148-158. PubMed ID: 28322842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication.
    Tripanichkul W; Sripanichkulchai K; Finkelstein DI
    Brain Res; 2006 Apr; 1084(1):28-37. PubMed ID: 16564034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peripherally acting NMDA receptor/glycineB site receptor antagonists inhibit morphine tolerance.
    Danysz W; Kozela E; Parsons CG; Sladek M; Bauer T; Popik P
    Neuropharmacology; 2005 Mar; 48(3):360-71. PubMed ID: 15721168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Memantine ameliorates motor impairments and pathologies in a mouse model of neuromyelitis optica spectrum disorders.
    Yick LW; Tang CH; Ma OK; Kwan JS; Chan KH
    J Neuroinflammation; 2020 Aug; 17(1):236. PubMed ID: 32782018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Short-term ethanol exposure alters calbindin D28k and glial fibrillary acidic protein immunoreactivity in hippocampus of mice.
    Satriotomo I; Miki T; Itoh M; Ameno K; Ijiri I; Takeuchi Y
    Brain Res; 2000 Oct; 879(1-2):55-64. PubMed ID: 11011006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ameliorative effects of a phenolic derivative of
    Igado OO; Andrioli A; Azeez IA; Girolamo F; Errede M; Aina OO; Glaser J; Holzgrabe U; Bentivoglio M; Olopade JO
    IBRO Rep; 2020 Dec; 9():164-182. PubMed ID: 32803016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chronic high-dose glycine nutrition: effects on rat brain cell morphology.
    Shoham S; Javitt DC; Heresco-Levy U
    Biol Psychiatry; 2001 May; 49(10):876-85. PubMed ID: 11343684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.