These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32388870)

  • 1. Quantifying the bias due to observed individual confounders in causal treatment effect estimates.
    Parast L; Griffin BA
    Stat Med; 2020 Aug; 39(18):2447-2476. PubMed ID: 32388870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confounder selection strategies targeting stable treatment effect estimators.
    Loh WW; Vansteelandt S
    Stat Med; 2021 Feb; 40(3):607-630. PubMed ID: 33150645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When does measurement error in covariates impact causal effect estimates? Analytic derivations of different scenarios and an empirical illustration.
    Sengewald MA; Steiner PM; Pohl S
    Br J Math Stat Psychol; 2019 May; 72(2):244-270. PubMed ID: 30345554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propensity Score-Based Estimators With Multiple Error-Prone Covariates.
    Hong H; Aaby DA; Siddique J; Stuart EA
    Am J Epidemiol; 2019 Jan; 188(1):222-230. PubMed ID: 30358801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases.
    Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR
    Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the E-value in the presence of bias amplification: a simulation study.
    Barrette E; Higuera L; Wherry K
    BMC Med Res Methodol; 2024 Mar; 24(1):79. PubMed ID: 38539082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outcome-adaptive lasso: Variable selection for causal inference.
    Shortreed SM; Ertefaie A
    Biometrics; 2017 Dec; 73(4):1111-1122. PubMed ID: 28273693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of moderator by confounder interactions in the assessment of treatment effect modification: a simulation study.
    Marsden AM; Dixon WG; Dunn G; Emsley R
    BMC Med Res Methodol; 2022 Apr; 22(1):88. PubMed ID: 35369866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subgroup balancing propensity score.
    Dong J; Zhang JL; Zeng S; Li F
    Stat Methods Med Res; 2020 Mar; 29(3):659-676. PubMed ID: 31456486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models.
    Wang C; Dominici F; Parmigiani G; Zigler CM
    Biometrics; 2015 Sep; 71(3):654-65. PubMed ID: 25899155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Sample Size to Attain Statistically Comparable Groups - A Required Data Preprocessing Step to Estimate Causal Effects With Observational Data.
    Kolar A; Steiner PM
    Eval Rev; 2021 Oct; 45(5):195-227. PubMed ID: 34698560
    [No Abstract]   [Full Text] [Related]  

  • 13. Covariate balance-related propensity score weighting in estimating overall hazard ratio with distributed survival data.
    Huang C; Wei K; Wang C; Yu Y; Qin G
    BMC Med Res Methodol; 2023 Oct; 23(1):233. PubMed ID: 37833641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high dimensional variable selection for doubly robust causal inference.
    Tang D; Kong D; Pan W; Wang L
    Biometrics; 2023 Jun; 79(2):903-914. PubMed ID: 35043393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable selection for causal mediation analysis using LASSO-based methods.
    Ye Z; Zhu Y; Coffman DL
    Stat Methods Med Res; 2021 Jun; 30(6):1413-1427. PubMed ID: 33755518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments.
    Patorno E; Glynn RJ; Hernández-Díaz S; Liu J; Schneeweiss S
    Epidemiology; 2014 Mar; 25(2):268-78. PubMed ID: 24487209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling for confounding via propensity score methods can result in biased estimation of the conditional AUC: A simulation study.
    Galadima HI; McClish DK
    Pharm Stat; 2019 Oct; 18(5):568-582. PubMed ID: 31111682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propensity score specification for optimal estimation of average treatment effect with binary response.
    Craycroft JA; Huang J; Kong M
    Stat Methods Med Res; 2020 Dec; 29(12):3623-3640. PubMed ID: 32640934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of covariate selection in controlling for selection bias in observational studies.
    Steiner PM; Cook TD; Shadish WR; Clark MH
    Psychol Methods; 2010 Sep; 15(3):250-67. PubMed ID: 20822251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.