These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 32389298)
1. Crosstalk between Saccharomycescerevisiae SAPKs Hog1 and Mpk1 is mediated by glycerol accumulation. Laz EV; Lee J; Levin DE Fungal Biol; 2020 May; 124(5):361-367. PubMed ID: 32389298 [TBL] [Abstract][Full Text] [Related]
2. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. Jacoby T; Flanagan H; Faykin A; Seto AG; Mattison C; Ota I J Biol Chem; 1997 Jul; 272(28):17749-55. PubMed ID: 9211927 [TBL] [Abstract][Full Text] [Related]
3. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mattison CP; Spencer SS; Kresge KA; Lee J; Ota IM Mol Cell Biol; 1999 Nov; 19(11):7651-60. PubMed ID: 10523653 [TBL] [Abstract][Full Text] [Related]
4. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. García R; Rodríguez-Peña JM; Bermejo C; Nombela C; Arroyo J J Biol Chem; 2009 Apr; 284(16):10901-11. PubMed ID: 19234305 [TBL] [Abstract][Full Text] [Related]
5. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399 [TBL] [Abstract][Full Text] [Related]
6. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Winkler A; Arkind C; Mattison CP; Burkholder A; Knoche K; Ota I Eukaryot Cell; 2002 Apr; 1(2):163-73. PubMed ID: 12455951 [TBL] [Abstract][Full Text] [Related]
7. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381 [TBL] [Abstract][Full Text] [Related]
8. Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Lee J; Levin DE Mol Biol Cell; 2018 Aug; 29(15):1904-1915. PubMed ID: 29846136 [TBL] [Abstract][Full Text] [Related]
9. Intracellular mechanism by which genotoxic stress activates yeast SAPK Mpk1. Liu L; Levin DE Mol Biol Cell; 2018 Nov; 29(23):2898-2909. PubMed ID: 30230955 [TBL] [Abstract][Full Text] [Related]
10. Role of the phosphatase Ptc1 in stress responses mediated by CWI and HOG pathways in Fusarium oxysporum. Lemos P; Ruiz-Roldán C; Hera C Fungal Genet Biol; 2018 Sep; 118():10-20. PubMed ID: 29870836 [TBL] [Abstract][Full Text] [Related]
11. Loss of function of Hog1 improves glycerol assimilation in Saccharomyces cerevisiae. Sone M; Navanopparatsakul K; Takahashi S; Furusawa C; Hirasawa T World J Microbiol Biotechnol; 2023 Jul; 39(10):255. PubMed ID: 37474876 [TBL] [Abstract][Full Text] [Related]
12. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Lawrence CL; Botting CH; Antrobus R; Coote PJ Mol Cell Biol; 2004 Apr; 24(8):3307-23. PubMed ID: 15060153 [TBL] [Abstract][Full Text] [Related]
13. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Mattison CP; Ota IM Genes Dev; 2000 May; 14(10):1229-35. PubMed ID: 10817757 [TBL] [Abstract][Full Text] [Related]
14. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Warmka J; Hanneman J; Lee J; Amin D; Ota I Mol Cell Biol; 2001 Jan; 21(1):51-60. PubMed ID: 11113180 [TBL] [Abstract][Full Text] [Related]
15. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Patterson JC; Goupil LS; Thorner J Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163 [TBL] [Abstract][Full Text] [Related]
16. The HOG pathway and the regulation of osmoadaptive responses in yeast. de Nadal E; Posas F FEMS Yeast Res; 2022 Mar; 22(1):. PubMed ID: 35254447 [TBL] [Abstract][Full Text] [Related]
17. Caffeine activates HOG-signalling and inhibits pseudohyphal growth in Saccharomyces cerevisiae. Elhasi T; Blomberg A BMC Res Notes; 2023 Apr; 16(1):52. PubMed ID: 37060035 [TBL] [Abstract][Full Text] [Related]
18. MAPK Hog1 closes the S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Lee J; Reiter W; Dohnal I; Gregori C; Beese-Sims S; Kuchler K; Ammerer G; Levin DE Genes Dev; 2013 Dec; 27(23):2590-601. PubMed ID: 24298058 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Wurgler-Murphy SM; Maeda T; Witten EA; Saito H Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256 [TBL] [Abstract][Full Text] [Related]
20. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]