BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32389301)

  • 21. Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol.
    Wimalasena TT; Greetham D; Marvin ME; Liti G; Chandelia Y; Hart A; Louis EJ; Phister TG; Tucker GA; Smart KA
    Microb Cell Fact; 2014 Mar; 13(1):47. PubMed ID: 24670111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From yeast genetics to biotechnology.
    Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(4):483-91. PubMed ID: 12512257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation.
    Wehrs M; Thompson MG; Banerjee D; Prahl JP; Morella NM; Barcelos CA; Moon J; Costello Z; Keasling JD; Shih PM; Tanjore D; Mukhopadhyay A
    Microb Cell Fact; 2020 Aug; 19(1):167. PubMed ID: 32811554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast population dynamics of industrial fuel-ethanol fermentation process assessed by PCR-fingerprinting.
    da Silva-Filho EA; Brito dos Santos SK; Resende Ado M; de Morais JO; de Morais MA; Ardaillon Simões D
    Antonie Van Leeuwenhoek; 2005 Jul; 88(1):13-23. PubMed ID: 15928973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.
    Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC
    Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.
    Vriesekoop F; Haass C; Pamment NB
    FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial contamination of fuel ethanol fermentations.
    Beckner M; Ivey ML; Phister TG
    Lett Appl Microbiol; 2011 Oct; 53(4):387-94. PubMed ID: 21770989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors affecting yeast ethanol tolerance and fermentation efficiency.
    Vamvakas SS; Kapolos J
    World J Microbiol Biotechnol; 2020 Jul; 36(8):114. PubMed ID: 32656576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.
    Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V
    Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic engineering of industrial strains of Saccharomyces cerevisiae.
    Le Borgne S
    Methods Mol Biol; 2012; 824():451-65. PubMed ID: 22160914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast selection for fuel ethanol production in Brazil.
    Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML
    FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation.
    de Souza Liberal AT; Basílio AC; do Monte Resende A; Brasileiro BT; da Silva-Filho EA; de Morais JO; Simões DA; de Morais MA
    J Appl Microbiol; 2007 Feb; 102(2):538-47. PubMed ID: 17241360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation.
    da Silva Filho EA; de Melo HF; Antunes DF; dos Santos SK; do Monte Resende A; Simões DA; de Morais MA
    J Ind Microbiol Biotechnol; 2005 Oct; 32(10):481-6. PubMed ID: 16175407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V; Radecka D; Aerts G; Verstrepen KJ; Lievens B; Thevelein JM
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.
    Della-Bianca BE; de Hulster E; Pronk JT; van Maris AJ; Gombert AK
    FEMS Yeast Res; 2014 Dec; 14(8):1196-205. PubMed ID: 25263709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of indigenous yeasts in traditional Irish cider fermentations.
    Morrissey WF; Davenport B; Querol A; Dobson AD
    J Appl Microbiol; 2004; 97(3):647-55. PubMed ID: 15281947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.
    Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR
    Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotechnological impact of stress response on wine yeast.
    Matallana E; Aranda A
    Lett Appl Microbiol; 2017 Feb; 64(2):103-110. PubMed ID: 27714822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.